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Abstract

We describe and analyze a simple randomized multiplicative weight update (MWU) based
algorithm for approximately solving positive linear programming problems, in particular, mixed
packing and covering LPs.

Given m explicit linear packing and covering constraints over n variables specified by N
nonzero entries, Young [36] gave a deterministic algorithm returning an (1 + ε)-approximate
feasible solution (if a feasible solution exists) in Õ

(
N/ε2

)
time. We show that a simple random-

ized implementation matches this bound, and that randomization can be further exploited to
improve the running time to Õ

(
N/ε+m/ε2 + n/ε3

)
(both with high probability). For instances

that are not very sparse (with at least ω̃(1/ε) nonzeroes per column on average), this improves
the running time of Õ

(
N/ε2

)
. The randomized algorithm also gives improved running times for

some implicitly defined problems that arise in combinatorial and geometric optimization.
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1 Introduction

In this paper we consider fast approximation schemes for positive linear programming problems
where all the input data consists of non-negative numbers, and the output solution is also required
to be non-negative. The most general class here is mixed packing and covering LPs which we state
in a normalized form below:

find x such that x ≥ 0, Ax ≤ 1 and Bx ≥ 1, (NMPC)

where A ∈ RP×n≥0 and B ∈ QC×n are nonnegative matrices∗. Let mp = |P| be the number of packing
constraints, mc = |C| the number of covering constraints, and m = mp + mc the total number of
constraints. We let N denote the total number of nonzeroes in A and B. A basic special case is
finding a nonnegative solution x ≥ 0 to Ax = b, where A and b have nonnegative entries.

A simpler subclass of (NMPC) considers pure packing problems of the form

max 〈c, x〉 over x ≥ 0 such that Ax ≤ 1 (P)

and pure covering problems of the form

min 〈c, x〉 over x ≥ 0 such that Bx ≥ 1, (C)

where again all inputs A, B, and c are assumed to be nonnegative. Pure packing and pure covering
LPs are duals of each other. In contrast, the dual of a mixed packing and covering LP is not a
mixed packing and covering LP.

Postive LPs are a particularly simple class of linear programs that nonetheless have many funda-
mental applications in computer science and optimization. Of course one can solve these by general
purpose LP solvers, but the running time is a non-linear polynomial in the input size. Moreover,
there are several applications in which the LP is implicitly defined. For several such LPs, using the
Ellipsoid method or explicitly writing down the LP and then using a standard solver is prohibitively
expensive.

We are interested in algorithms that obtain relatively coarse approximations in substantially less
time. The approximation criteria is as follows. Given an error parameter ε > 0, if a feasible solution
z to (NMPC) exists, then we must return a nonnegative vector x ≥ 0 such that Ax ≤ (1 + ε)1 and
Bx ≥ (1 − ε)1. (Clearly, the error can be made one-sided by scaling x up or down.) In a regime
where ε is moderately large, we seek algorithms that are polynomial in 1/ε and very fast in the
other parameters m, n, and N . In contrast, interior point algorithms or ellipsoid based methods
obtain an additive error of ε and the dependence of the run-time is polynomial in log(1/ε); however,
the dependence on m, n and N is much worse.

The past two decades, starting with works of Shahrokhi and Matula [29], Plotkin, Shmoys, and
Tardos [28], Grigoriadis and Khachiyan [14], Luby and Nisan [24], and many others (too many to
provide a proper accounting here), have produced a substantial amount of literature on iterative
methods for solving positive LPs with polynomial dependence on 1/ε and otherwise better dependen-
cies on parameters such as the input size. Here we are interested in width-independent algorithms.
One broad technique is Lagrangian relaxation with potential functions (exponential or logarithmic)
whose run-time dependence on ε is 1/ε2. Another technique relies on a reduction to (accelerated)
first order methods from convex optimization. These methods improve the dependence on ε to 1/ε;
Bienstock and Iyengar [5] demonstrated this building upon Nesterov’s accelerated gradient descent
∗The normalized form does not have an objective function since a maximization or minimization objective with

non-negative coefficients can be incorporated as a constraint.
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technique. The first order methods had worse running times on the other parameters, however,
recently there have been several exciting developments that are able to obtain a 1/ε dependence
while also having near-linear dependence on the other parameters.

For (NMPC) the algorithm of Young [36] returns an ε-approximation deterministically in
O
(
N ln(m)/ε2

)
; this is the first nearly-linear time algorithm. Young’s algorithm follows the mul-

tiplicative weight update (MWU) framework, and improves on previous MWU-type algorithms by
lazily applying the weight updates via an efficient amortized data structure. Applying Nesterov’s ac-
celerated gradient descent technique, Bienstock and Iyengar [5] achieve a running time of O

(
n2.5d/ε

)
where d is the maximum number of nonzeroes in a column.

In the restricted setting of pure packing and covering better results are known. Koufogiannakis
and Young [21, 22] obtained (1 + ε) approximations to (P) and (C) in O

(
N + (m+ n) ln(m)/ε2

)
time via a randomized algorithm. The algorithm of Koufogiannakis and Young efficiently simulates
a zero-sum game between two players solving the primal and dual problem respectively and draws
inspiration from Grigoriadis and Khachiyan [15]. Recently, Allen-Zhu and Orecchia [2] gave a
randomized coordinate descent algorithm that returns a (1 + ε)-relative approximation to (P) in
O(N ln(N) ln(ε)/ε) time and (C) in O

(
N ln(n) ln(ε)/ε1.5

)
time. The running time for (C) was

subsequently improved to O
(
N ln2(N/ε)/ε

)
by Wang, Rao, and Mahoney [33]. There have been

several recent developments in parallel algorithms as well. Since our focus here is only on sequential
algorithms, we refer the reader to the Mahoney, Rao, Wang, and Zhang [25] for several pointers to
recent and past work.

It is natural to ask whether one can obtained improved running times for (NMPC) more in line
with the ones known for (P) and (C). This was explicitly raised in [21, 22, 36]. The high-level goal
is to shift the ε-factors in the running time off of the dominant term N to lower-order terms such
as m and n.

Open Question 1.1. Is there a (randomized) algorithm for (NMPC) that returns a (1 + ε)-
approximate solution in Õ

(
N + (n+m)/ε2

)
time or in Õ(N/ε) time?

We note that some ideas that help for pure packing and covering such as coupling do not yet
have an analogue for (NMPC) and this makes it challenging to address the preceding question. Our
discussion so far has mainly focused on explicitly described LPs. As we mentioned already, there
are several applications where the LP is implicitly defined. A canonical example is multicommodity
flow which was instrumental in the development of fast approximation schemes for positive LPs.
Achieving fast running times for such problems requires a mix of techniques. Our work here is not
only motivated by explicit problems of the form (NMPC), but other (implicit) mixed packing and
covering problems contingent on the implementation of simple subroutines/oracles. In this regard,
one advantage of the MWU-based iterative methods is the relative simplicity of both the algorithm
and the analysis, which allows for subroutines to be approximated by heuristics and accelerated by
data structures for a better total running time (see, for example, [27, 1, 36, 6, 7]). Our focus in this
paper is on augmenting the MWU framework to obtain faster and/or simpler algorithms for several
classes of problems.

Our contribution and results: We develop a randomized algorithm based on the MWU frame-
work for (NMPC), perhaps most similar to [36] among the competing algorithms mentioned above.
It leads to a width-independent algorithm that simplifies the weight update step via a simple cor-
related random choice in each iteration. The randomized scheme was used previously in [21, 22] for
pure packing and covering in the context of their primal-dual coupled algorithm. Here we apply it
to a primal algorithm in the more general setting of mixed packing and covering.

Our first contribution is to analyze this randomized algorithm and prove that it achieves a
(1 + ε)-approximation in O(m logm/ε2) iterations with high-probability. The analysis is technical
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due to the adaptive nature of the step sizes that are needed to achieve width-independence, and
the interaction between the packing and covering constraints (the packing weights go up and the
covering weights go down).

Our second contribution leverages the randomized MWU algorithm for better approximation
algorithms to (NMPC). An easy implementation recovers the O(N logm/ε2) run time achieved in
[36]; the advantage of the randomized algorithm is that steps are transparent and very simple data
structures suffice. In addition the randomization is useful for some implicit problems. We then
push randomized techniques further to improve the running time and make measurable progress on
Question 1.1. Our improvement is captured by the next theorem.

Theorem 1.2. Given a normalized mixed packing and covering problem (NMPC), random-mwu
returns a ε-relative approximation in

O

(
N log2m

ε
+
m log2m

ε2
+
n log(m)(log(m) + log(n))

ε3

)
= Õ

(
N

ε
+
m

ε2
+
n

ε3

)
time with probability 1− 1/poly(m).

The improvement from Õ
(
N/ε2

)
to Õ(N/ε) is made possible by a general data structure for

approximating nonnegative linear maps that we discuss in detail later.† The improvement is mean-
ingful when the input matrix is not extremely sparse. For dense matrices withN = Ω̃(mn), Theorem
1.2 improves the running time from Õ

(
mn/ε2

)
to Õ(mn/ε). We believe that it may be possible to

improve the run time further to achieve a bound of Õ
(
N/ε+ (m+ n)/ε2

)
. Note that MWU-based

algorithms cannot escape some 1/ε2 dependence via the lower bound of Klein and Young [19].

Applications to implicit problems: Finally, our randomized algorithm yields faster algorithms for
solving some implicit LPs that arise as relaxations in combinatorial and geometric optimization.
We note that the randomized MWU algorithm is useful not just for mixed packing and covering but
also pure packing and covering. In some recent work [6, 7] we had developed faster algorithms for
implicit packing problems by adapting the MWU framework via a combination of data structures.
Our randomized variant of MWU was initially motivated by some examples of implicit problems
in combinatorial and geometric settings that were not amenable to the data structure ideas in [6].
In Section 5 we sketch a few applications of explicit and implicit problems and highlight how the
randomized variant allows for handling new implicit problems as well as generalizing some prior
results in [6] to the mixed packing and covering setting. Our focus in this paper is on the high-level
randomized algorithm and its analysis for explicit problems. Details of implicit applications are
deferred, partly due to space constraints, and partly due to the fact that these applications require
domain-specific data structures and other ideas which are beyond the scope of this paper.

2 Randomized MWU and Overview of Techniques

The proposed algorithm, called random-mwu and sketched in Figure 1, is (at a high-level) a variant of
a deterministic algorithm for mixed packing and covering originally proposed in [35] and refined in
[36]. The algorithm falls in the broad framework of Lagrangian relaxation algorithms that iteratively
solve a relaxation of the original problem as follows. The algorithm maintains weights for each
constraint (which can be interpreted as dual variables). We let v denote the weight vector for
packing constraints and w denote the vector for covering constraints; v and w are both initialized
to the all-1’s vector 1. In each iteration the algorithm finds a feasible solution y for the relaxed
†For ease of notation, we use Õ(· · ·) to suppress logarithmic factors.
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random-mwu(A ∈ RP×n≥0 ,B ∈ RC×n≥0 ,ε)
η = (lnm)/ε // parameter to control step size
v ← 1, w ← 1 // v, w: packing & covering weights
Q ← C // Q: active covering constraints
// for a, b ∈ RC , let 〈a, b〉Q =

∑
i∈Q

aibi

t← 0 // time goes from 0 to 1

[1] while t ≤ 1 and Q 6= ∅
[2] choose y ∈ Rn≥0 such that

(*) 〈v,Ay〉 ≤ (1 +O(ε))〈v,1〉
(**) 〈w,By〉Q ≥ (1−O(ε))〈w,1〉Q
// y is approx soln to Lagrangean relaxation with weights v, w

if no y ∈ Rn≥0 satisfies (*) and (**) then return “infeasible”
[3] δ ← max value δ > 0 such that // step size

(*) δηAy ≤ ε
(**) δηBy ≤ ε

(***) t+ δ ≤ 1
x← x+ δy // increment current solution with δy

t← t+ δ // increment time
pick θ ∈ [0, 1] uniformly at random
for i ∈ P // update/increase packing weights

// approximate vi ← exp(δη〈ei, Ay〉)vi
if (θ ≤ δη〈ei, Ay〉/ε)

[4] vi ← exp(ε)vi
end for
for i ∈ Q // update/decrease active covering weights

// approximate wi ← exp(−δη〈ei, By〉)
if (θ ≤ δη〈ei, By〉/ε)
wi ← exp(−ε)wi

[5] if wi ≤ exp(−η)
Q ← Q− i // i made inactive if weight small enough

end for
end while
return x

Figure 1: A randomized implementation of the MWU framework for mixed packing
and covering.

problem which is obtained by collapsing all the packing constraints into a single constraint by taking
a weighted combination, and similarly collapsing all the covering constraints into a single constraint:

find x ≥ 0 such that 〈v,Ax〉 ≤ 〈v,1〉 and 〈w,Bx〉 ≥ 〈w,1〉 (1)

Note that if the relaxed problem is infeasible then the original problem is infeasible. random-mwu
uses an approximate oracle rather than exact oracle. Relaxing the oracle does not upset the the
final analysis for a (1 + ε)-approximate solution, and offers flexibility that leads to improvements
in the running time. A key observation is the relative simplicity of (1) compared to (NMPC). For
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1 ≤ i ≤ n, let αi = 〈v,A〉i/〈v,1〉 and let βi = 〈w,B〉i/〈w,1〉. (1) is feasible iff there exists an i such
that αi/βi ≤ 1. Then setting yi = 1/βi and all other coordinates to zero is a feasible solution. In
each iteration, we can assume without loss of generality that only one coordinate is updated.

The algorithm adds the solution y to the current solution (which is initialized to 0) with an
appropriate step size δ. Our algorithm follows the “timed” framework from [8] which increments
time from 0 to 1 and the step size and other parameters are appropriately normalized. To obtain
a width-independent running time two key existing ideas are needed: (i) non-uniform step sizes
[13] and (ii) dropping covering constraints that are already satisfied. See [36]. After each iteration
the packing and covering weights are updated multiplicatively (packing weights are increased in an
exponential fashion and covering weights are decreased).

The efficiency of the algorithm depends on the number of iterations and the work done in each
iteration. One can show that the deterministic variant terminates in O(m logm/ε2) iterations. Each
iteration requires two main steps: (i) finding a solution to (1), and (ii) updating the weights. These
are non-trivial bottlenecks to achieving an overall near-linear running time. This was accomplished
in [36] using a careful amortized data structure to lazily update the weights among other ideas.
Some of these ideas were shown to be effective for implicit problems as well [6, 7].

The primary difference in the algorithm we propose from that in [36] is that the multiplicative
weight updates are now randomized. We borrow this idea from [22] where it was applied to pure
packing and covering problems. Where the standard deterministic update might increase a weight
by a multiplicative factor of exp(εp) for some p ∈ [0, 1], random-mwu increases the weight by a
multiplicative factor of exp(ε) with probability p. In expectation, random-mwumakes the appropriate
update with respect to the logarithm of the weight. The key to implementation efficiency is that all
the weight updates are correlated via a single random variable θ. This cleanly addresses the efficiency
issue in updating the weights at the expense of moving the burden to proving the correctness of
the algorithm. On the other hand, randomized weight updates do not address the issue of solving
(1) in each iteration, which remain a bottleneck. We use randomization again in a different way to
improve that step as well in Section 4.

Figure 1 is incomplete, as we leave the implementation of lines [2] and [3] unspecified until
Section 4. This part will also be randomized and the details are deferred primarily for ease of
exposition. A secondary reason is that in some implicit packing and covering problems, [2] and [3]
can be supplied by a more efficient and domain-specific oracle. Some other low-level implementation
details are omitted from Figure 1. The additional code allows us to list all the entries of a column
above a threshold in time slightly faster than pre-sorting all the nonnegative entries and doing a
binary search. We defer this discussion to the end because the techniques are well-known and the
speedup is by only a logarithmic factor. Full implementation details are eventually provided in
Section 4.

We prove that random-mwu terminates both successfully and efficiently with high probability.

Theorem 2.1. Let A ∈ Rmp×n
≥0 and B ∈ Rmc×n

≥0 be nonnegative matrices for which there exists a
nonnegative x ∈ Rn≥0 such that Ax ≤ 1 and Bx ≥ 1. Let m = mp + mc, and let N be the total
number of nonzero coefficients in A and B.

With probability 1 − 1/ poly(m), random-mwu(A,B,ε) returns a point x̂ such that Ax̂ ≤
(1 +O(ε))1 and Bx̂ ≥ (1−O(ε))1 in O

(
(mc + min{mp, n}) ln(n)/ε2

)
iterations and, excluding

the time spent in lines [2] and [3], Õ
(
N +m ln(n)/ε2

)
time. Each packing weight vi, i ∈ P in-

creases along integral powers of exp(ε) from 1 to (at most) exp(ln(mp)/ε). Each covering weight
wi, i ∈ C decreases along integral powers of exp(ε) from 1 to exp(− ln(mc)/ε).

Remark 2.2. In the preceding theorem we assumed the existence of a feasible solution for the sake
of simplicity. In fact the algorithm either outputs a (1 + ε)-approximate solution in the claimed run
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time or correctly reports that the given system has no feasible solution.

As stated, the running time of random-mwu is assured with high probability (and can be shown
to be finite with probability 1), but technically speaking is unbounded. random-mwu can be made a
proper Monte Carlo algorithm that always terminates in O

(
N +m ln(m)/ε2

)
time (excluding calls

to the oracle) by killing the algorithm if it runs for too long.

Online Chernoff: Chernoff bounds for sums of independent, bounded and non-negative random
variables are ubiquitous in computer science. However, in processes or algorithms where the choice in
a step depends on decisions made in previous steps, it is necessary to use some form of martingale
analysis. However, typical martingale inequalities are stated in the setting of bounded random
variables with zero mean, and in this setting the concentration bounds depend on the number of
variables (which correspond to iterations in our case) or the sum of their variances. These are not
suitable for our needs. The following concentration bound reformulates Chernoff inequalities for
online settings, and is the workhorse of the proofs in this paper. The theorem in a slightly stronger
form with a stopping time is stated and proved in [22].

Theorem 2.3 ([22, Lemma 10]). Let X1, . . . , Xn, Y1, . . . , Yn ∈ [0, 1] be random variables and let
ε ∈ [0, 1/2) be a sufficiently small constant.

(a) If E[Xi | X1, . . . , Xi−1, Y1, . . . , Yi] ≤ Yi for i ∈ [n], then for any δ > 0,

P

[
n∑
i=1

Xi ≥ (1 + ε)
n∑
i=1

Yi + δ

]
≤ (1 + ε)−δ

(b) If E[Xi | X1, . . . , Xi−1, Y1, . . . , Yi] ≥ Yi for each i, then for any δ > 0,

P

[
n∑
i=1

Xi ≤ (1− ε)
n∑
i=1

Yi − δ

]
≤ (1− ε)δ.

Note that concentration bound depends only on the additive term δ and not on n. Theorems
such as the preceding one are related to work on drift analysis in random processes [23].

2.1 Approximating monotonic linear maps

random-mwu with some basic bucketing tricks allows us to recover an implementation with a running
time of O

(
N logm/ε2

)
for (NMPC). In order to obtain the running time in Theorem 1.2 we need the

next component of our work. Recall that the randomization in the algorithm allows us to efficiently
update v and w; the entries are probabilistically updated so that we can charge the cost of an
update to a relatively big change in the value. However, implementing [2] efficiently requires us
to dynamically maintain a (1± ε)-relative approximation for every coordinate of AT v and BTw.
Since the coordinates of v and w are updated infrequently, the basic approach already maintains
AT v and BTw deterministically in O

(
N log(m)/ε2

)
time total. Here we develop a randomized data

structure that improves this bound. We introduce the ideas from a more fundamental perspective,
as the results are interesting in their own right.

Recall that a function f : Rn → Rm is linear if f(αx + βy) = αf(x) + βf(y) for any x, y ∈ Rn

and α, β ∈ R. A linear function f : Rm → Rn can be represented by a matrix A ∈ Rm×n such
that f(x)i =

∑n
j=1Aijxj for any input x ∈ Rn and output coordinate i ∈ [m]. The function f is

monotonically increasing iff the coefficients Aij are nonnegative. Given the matrix representation
A of a linear function f , we can compute the vector Ax exactly in O(N) time, where N is the
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number of nonzeroes in A, via the above sum. We want to maintain the vector Ax as x varies; i.e.,
x = z1 + · · · + zk ∈ Rn over a sequence of updates zi ∈ Rn. In the offline setting, if all the vectors
z1, . . . , zk are provided as input, then we can simply compile their sum x and compute Ax in O(N)
time plus the time it takes to read in z1, . . . , zk. In many applications, the vectors are delivered online
and adversarially. Having already computed A(z1+· · ·+zk), we are given zk+1, and want to compute
the new vector, A(z1+· · ·+zk+zk+1). By linearity, A(z1+· · ·+zk+zk+1) = A(z1+· · ·+zk)+Azk+1,
and hence we can computing Azk+1

and add it to the existing solution A(z1 + · · ·+ zk). Doing this
for every vector takes total time O(kN) which is significantly slow when k is large.

The natural approach above is seemingly best possible as far as exact and deterministic algo-
rithms go. In some modern settings, the problem is more relaxed where an approximation to Ax
is sufficient. When implementing fast approximation algorithms, dynamically updating Ax may
even be a bottleneck. This is precisely the setting in random-mwu, so we consider the problem of
maintaining Ax approximately rather than exactly.

Remark 2.4. In mixed packing and covering, the covering weights go down, and hence we also need
to handle the approximate maintenance of Ax as x monotonically decreases with the guarantee that
Ax stays nonnegative.

In particular, we are interesting in uniform approximations where each coordinate 〈ei, Ax〉 (i ∈
[m]) should be approximated well. We focus on the positive and monotone setting where A ∈ Rm×n≥0 ,
x ≥ 0 and x is either monotonically increasing or monotonically decreasing. A simplified form of
our basic result is as follows.

Theorem 2.5. Let ε > 0 with ε sufficiently small, and let A ∈ Rm×n≥0 be a nonnegative matrix
with N total nonzeroes, and let L ∈ N and β > 0 be fixed parameters. One can initialize a
data structure in O(N) time with the following guarantee. Consider any sequence of L increments
α1ej1 , α2ej2 , . . . , α`ejL ∈ Rn≥0 delivered online satisfying the following

(i) Either α` ≥ 0 for all ` or α` ≤ 0 for all `

(ii) Letting x` = 1 +
∑̀
k=1

αkejk for each ` ∈ [L], we have
1

β
A1 ≤ Ax` ≤ βA1 for all ` ∈ [L] (i.e.,

the online sequence is constrained as such).

Then the data structure maintains a nonnegative vector y ∈ Rm≥0 that with probability at least 1 −
1/poly(m,L), satisfies (1− ε)Ax` ≤ y ≤ (1 + ε)Ax` for all ` ∈ [L] in

O

(
L(log(m) + log log β) +N(log(m) + log log β) log β +m

log(β)(logm+ logL)

ε2

)
total time.

Organization of the rest of the paper: The rest of the paper is devoted to proving the theorems
that we outlined so far. We start by proving Theorem 2.1 in Section 3. Section 4 proves Theorem 2.5.
We put together the ingredients to prove Theorem 1.2 in Section 4.1. An overview of applications
is provided in Section 5.

We organized the paper in a sequential fashion with full proofs rather than move them to the
appendix. The reader is encouraged to skim the high-level ideas and skip the low-level proofs as
they see fit.

Other related work: There is a vast literature on fast approximation schemes for LPs and convex
programming problems. Several important techniques have been developed by many authors. It is
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infeasible to do justice to this literature here. We refer the reader to Arora, Hazan, and Kale [4]
for a broad survey on the utility of MWU in theoretical computer science. Our work is inspired by
several ideas and results in the papers of Young [36, 22, 34, 35] which incorporate ideas from other
papers including Garg and Könemann [13] and Fleischer [11]. Some of our motivation for revisiting
MWU based methods comes from applications to implicit problems that arise in combinatorial and
geometric settings [1, 6, 7]. Several papers in computational geometry exploit MWU (where it is
referred to as reweighting technique) for covering and hitting set problems; typically the algorithms
do not explicitly refer to the LP relaxation and combine the rounding and LP solving in a single
framework for deriving (approximation) algorithms. We believe that separating the problem of
solving the LP from that of rounding, and separating the generic high-level MWU framework from
its specific implementation for a concrete application, is helpful.

Although we have mainly focused on linear programming problems here, Lagrangian relaxation
based algorithms are applicable to the broader context of convex programming [18], and also for sub-
modular function maximization [8]. We believe that our randomized variant should also generalize to
these settings. Lagrangian relaxation via logarithmic barrier function also yield width-independent
algorithms with O(1/ε2) iterations — see [9, 17] and references therein. These methods are less
well-known in the computer science algorithms literature, and appear to be more difficult to exploit
via data structures and other techniques.

3 Randomized multiplicative weight updates in the oracle model

In this section, we analyze random-mwu in the oracle model with line [2] unspecified and prove
Theorem 2.1.

random-mwu is an iterative algorithm that (as written) is indexed by a continuous “time” variable
t that increases from 0 to 1. For each iteration ` ∈ N, let v`, w`, and t` denote the values of v, w,
t at the beginning of the `th iteration. We let y` and δ` denote the values of y and δ computed
during the `th iteration. We let ˆ̀∈ N denote the total number of iterations (when it terminates),
and denote v̂ = lim`→∞ v

`, ŵ = lim`→∞w
`, and t̂ = lim`→∞ t

` denote the values of v, w, and t
at the end of the algorithm (or the possibly unbounded limit if it does not terminate). For ` ∈ N,
we let Q` denote the value of Q at the beginning of the `th iteration if the algorithm has not yet
terminated, or to Qˆ̀ if the algorithm has terminated and ` > ˆ̀.

The analysis shows that the packing constraints are not violated by more than a (1 + ε)-factor
and that the covering constraints are satisfied to within a (1− ε) factor with high probability. This
is non-trivial even in the deterministic setting. In our analysis we use the time variable t to link
the evolution of the packing and covering weights. The main task in the analysis is to show that
the randomized algorithm’s state closely follows the deterministic invariants. For this purpose we
rely repeatedly on Theorem 2.3. We consider packing and covering constraints separately, and then
consider the number of iterations after which we tie things together.

3.1 Packing constraints

We begin by showing that the randomized weight update follows the approximates MWU framework
in expectation.

Lemma 3.1. For each iteration `, with the outcomes of iterations 1 through ` − 1 fixed, and for

9



each packing constraint i ∈ P, we have

E
[
ln
(
v`+1
i

)]
= ln

(
v`i
)

+ δ`η
〈
ei, Ay

`
〉

and E
[
v`+1
i

]
≤ exp

(
(1 + ε)δ`η

〈
ei, Ay

`
〉)
v`i .

Proof. The first inequality is immediate from the randomized step in the algorithm. For the second,
we have

E
[
v`+1
i

]
=
(
δ`η
〈
ei, Ay

`
〉
/ε
)

exp(ε)v`i +
(

1− δ`η
〈
ei, Ay

`
〉
/ε
)
v`i by [4],

= v`i + (exp(ε)− 1)
(
δ`η
〈
ei, Ay

`
〉
/ε
)
v`i ,

≤ v`i + (1 + ε)δ`η
〈
ei, Ay

`
〉
v`i

since exp(ε) ≤ 1 + ε+ ε2 for ε sufficiently small,

≤ exp
(

(1 + ε)δ`η
〈
ei, Ay

`
〉)
v`i

since 1 + z ≤ exp(z) for all z. �

The second lemma analyzes the sum of weights 〈v,1〉 for the packing constraints. In particular,
it shows that the expected increase in the logarithm of the sum of packing constraints during an
iteration is proportional to the step size.

Lemma 3.2. Let ` ∈ N be an iteration and fix the outcomes of iterations 1 through `− 1. We have,

E
[〈
v`+1,1

〉]
≤ exp

(
(1 +O(ε))δ`η

)〈
v`,1

〉
and E

[
ln
(〈
v`+1,1

〉)]
≤ (1 +O(ε))δ`η + ln

(〈
v`, 1

〉)
.

Proof. By Lemma 3.1 and linearity of expectation, we have

E
[〈
v`+1, 1

〉]
≤
∑
i∈P

exp
(

(1 + ε)δ`η
〈
ei, Ay

`
〉)
v`i .

The sum on the right hand side is essentially the sum for the standard (exact and deterministic)
multiplicative weight update. Standard analysis of MWU, given at the end of the proof for the sake
of completeness, implies the following inequality (2).∑

i∈P
exp
(

(1 + ε)δ`η
〈
ei, Ay

`
〉)
v`i ≤ exp

(
(1 +O(ε))δ`η

)〈
v`, 1

〉
(2)

Assuming (2), we have,

E
[〈
v`+1, 1

〉]
≤ exp

(
(1 +O(ε))δ`η

)〈
v`, 1

〉
,

for the first inequality. To obtain the second inequality, applying Jensen’s inequality, we have

E
[
ln
(〈
v`+1, 1

〉)]
≤ ln

(
E
[〈
v`+1, 1

〉])
≤ (1 +O(ε))δ`η + ln

(〈
v`,1

〉)
,

as desired.

10



We now prove (2). Let αi =
〈
ei, Ay

`
〉
. The choice of δ` ensures that e δ`ηαi ≤ ε for all i ∈ P.

Using the fact that exp(z) ≤ 1 + z + z2 for z ∈ [0, 1/2) and ε is sufficiently small,∑
i∈P

exp
(

(1 + ε)δ`η
〈
ei, Ay

`
〉)
v`i =

∑
i∈P

exp
(

(1 + ε)δ`ηαi

)
v`i

≤
∑
i∈P

v`i

(
1 + (1 + ε)δ`ηαi + ((1 + ε)δ`ηαi)

2
)

=
∑
i∈P

v`i + (1 + ε)
∑
i∈P

v`i δ
`αi(1 + (1 + ε)δ`ηαi)

≤
∑
i∈P

v`i + (1 +O(ε))δ`η
∑
i∈P

v`iαi

=
〈
v`, 1

〉
+ (1 +O(ε))δ`η

〈
v,Ay`

〉
≤
∑
i∈P

v`i + (1 +O(ε))δ`η
〈
v`,1

〉
(y` satisfies 〈v,Ax〉 ≤ 〈v,1〉 )

= (1 + (1 +O(ε))δ`η)
〈
v`,1

〉
≤ exp

(
(1 +O(ε))δ`η

)〈
v`, 1

〉
,

as desired. The last inequality uses the fact that 1 + z ≤ exp(z). �

In the deterministic version of MWU the weight of a packing constraint i is exponential in the
load of constraint i. The next lemma shows that the randomized weight tracks the load closely.
Here it is more convenient to work with the logarithm of the weight.

Lemma 3.3. For sufficiently small ε > 0, any i, any L ∈ N, and any ζ > 0,

P
[
(1− ε)η

〈
ei, Ax

L+1
〉
≥ ln

(
vL+1
i

)
+ ζ
]
≤ (1− ε)ζ/ε.

Proof. For each index ` ∈ [L], let

X` =
ln
(
v`+1
i

)
− ln

(
v`i
)

ε
and Y` =

η
〈
ei, Ay

`
〉

ε
.

Then

ε
L∑
`=1

X` = ln
(
vL+1
i

)
and ε

L∑
`=1

Y` = η
〈
ei, Ax

`+1
L

〉
,

so

P
[
(1− ε)η

〈
ei, Ax

L+1
〉
≥ ln

(
vL+1
i

)
+ ζ
]

= P

[
L∑
`=1

X` ≤ (1− ε)
L∑
`=1

Y` −
ζ

ε

]
.

Moreover, by line [4], we have X` ∈ [0, 1], and by Lemma 3.1, we have
E[X` | X1, . . . , X`−1, Y1, . . . , Y`] = Y`. Therefore, by Theorem 2.3 (b), we have

P

[
L∑
`=1

X` ≤ (1− ε)
L∑
`=1

Y` −
ζ

ε

]
≤ (1− ε)ζ/ε,

as desired. �
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The next lemma shows that logarithm of the total sum of packing weights closely tracks the
time with appropriate normalization.

Lemma 3.4. For sufficiently small ε > 0, any L ∈ N, and any ζ > 0,

P
[
ln
(〈
vL+1,1

〉)
≥ ln(m) + (1 +O(ε))ηtL+1 + ζ

]
≤ (1 + ε)−ζ/ε.

Proof. For each index ` ∈ [L], let

X` =
ln
(〈
v`+1,1

〉)
− ln

(〈
v`,1

〉)
ε

and Y` =
ηδ`

ε
,

where X` = Y` = 0 for indices ` > ˆ̀ after the algorithm has ended. Then

ε

L∑
`=1

X` = ln
(〈
vL+1,1

〉)
− ln(m) and ε

L∑
`=1

Y` = ηtL+1,

so

P
[
ln
(〈
vL+1, 1

〉)
≥ ln(m) + (1 +O(ε))ηtL+1 + ζ

]
= P

[
L∑
`=1

X` ≥ (1 +O(ε))
L∑
`=1

Y` +
ζ

ε

]
.

Moreover, for each index `, we have X` ∈ [0, 1] by line [4], and E[X`] ≤ (1 +O(ε))Y` by Lemma
3.2. Therefore, by Theorem 2.3 (a),

P

[
L∑
`=1

X` ≥ (1 +O(ε))

L∑
`=1

Y` +
ζ

ε

]
≤ (1 + ε)−ζ/ε,

as desired. �

Lemma 3.5. For sufficiently small ε > 0, any i, any L ∈ N, and η ≥ ln(m)/ε,

P
[〈
ei, Ax

L+1
〉
≥ 1 +O(ε)

]
≤ 1

poly(m)
.

Proof. Let L ∈ N, and let ζ > 0 be a parameter to be fixed later. We have

(1− ε)η
〈
ei, Ax

L+1
〉
≤ ln

(
vL+1
i

)
+ ζ by Lemma 3.3,

≤ ln
(〈
vL+1, 1

〉)
+ ζ since v̂ ≥ 1,

≤ ln(m) + ηtL+1 + 2ζ by Lemma 3.4,

≤ ln(m) + η + 2ζ since tL+1 ≤ 1

with total probability of failure, by the union bound, of at most (1 + ε)−ζ/ε + (1− ε)ζ/ε. For
ζ = O(lnm), the claim follows. �
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3.2 Covering constraints

We now prove that random-mwu approximately satisfies the covering constraints with high proba-
bility. The first lemma observes that the randomized weight update does the “right thing” (per the
MWU framework) in expectation.

Lemma 3.6. Let ` ∈ [L] be an iteration and let the outcomes of iterations 1 through `− 1 be fixed.
For each remaining covering constraint i ∈ Q`, we have

E
[
ln
(
w`+1
i

)]
≥ ln

(
w`i
)
− δ`η

〈
ei, By

`
〉

and E
[
w`+1
i

]
≤ exp

(
−(1− ε)δ`η

〈
ei, By

`
〉)
w`i .

Proof. The first inequality is immediate from the algorithm. For the second, we have

E
[
w`+1
i

]
=
δ`η
〈
ei, By

`
〉

ε
exp(−ε)w`i +

(
1−

δ`η
〈
ei, By

`
〉

ε

)
w`i

= w`i − (1− exp(−ε))

(
δ`η
〈
ei, By

`
〉

ε

)
w`i

≤ w`i − (1− ε)δ`η
〈
ei, By

`
〉
w`i

since exp(−ε) ≤ 1− ε+ ε2 for ε > 0,

≤ exp
(
−(1− ε)δ`η

〈
ei, By

`
〉)
w`i

since 1− z ≤ exp(−z) for z ≥ 0,

as desired. �

We now consider the sum of covering weights of the active constraints and the expectation of
the change in a single iteration.

Lemma 3.7. Let ` ∈ [L] be an iteration and let the outcomes of iterations 1 through `− 1 be fixed.
Then

E

[〈
w`+1, 1

〉
Q`

]
≤ exp

(
−(1−O(ε))ηδ`

)〈
w`,1

〉
Q`

(3)

and

E

[
ln

(〈
w`+1,1

〉
Q`

)]
≤ ln

(〈
w`,1

〉
Q`

)
− (1−O(ε))ηδ`.

Proof. By Lemma 3.6 and linearity of expectation, we have

E

[〈
w`+1,1

〉
Q`

]
≤
∑
i∈Q`

exp
(

(1− ε)δ`η
〈
ei, By

`
〉)
w`i .

13



The right hand side is essentially the sum if the weight update were executed exactly and determin-
istically. The standard analysis for (deterministic) MWU, similar to the proof of (2) above, implies
the following inequality:∑

i∈Q`

exp
(
−(1− ε)δ`η

〈
ei, By

`
〉)
w`i ≤ exp

(
−(1−O(ε))δ`η

)〈
w`, 1

〉
Q`

(4)

By (4), we have,

E

[〈
w`+1,1

〉
Q`

]
≤ exp

(
−(1−O(ε))δ`η

)〈
w`, 1

〉
Q`
,

as desired. For the second inequality, by Jensen’s inequality, we have,

E

[
ln

(〈
w`+1,1

〉
Q`

)]
≤ ln

(
E

[〈
w`+1,1

〉
Q`

])
≤ ln

(
exp
(
−(1−O(ε))ηδ`

)〈
w`,1

〉
Q`

)
by (3),

= ln

(〈
w`, 1

〉
Q`

)
− (1−O(ε))ηδ`,

as desired. �

The lemma below shows that the logarithm of the covering weight wi tracks the load of covering
constraint i closely.

Lemma 3.8. For sufficiently small ε > 0, any i, any L ∈ N, and any ζ > 0,

P
[
(1 + ε)η

〈
ei, Bx

L+1
〉
≤ ln

(
wL+1
i

)
− ζ
]
≤ (1− ε)ζ/ε.

Proof. For each index ` = 1, . . . , L, let

X` =
ln
(
w`i
)
− ln

(
w`+1
i

)
ε

and Y` =
δ`η
〈
ei, By

`
〉

ε
,

where X` = Y` = 0 for indices ` > ˆ̀ after the algorithm terminates. Then

ε

L∑
`=1

X` = ln
(
w1
i

)
− ln(ŵi) = ln(ŵi) and ε

L∑
`=1

Y` = η
〈
ei, Bx

L+1
〉
,

so

P[(1 + ε)η〈ei, Bx̂〉 ≤ − ln(ŵ)− ζ] = P

[
L∑
`=1

X` ≥ (1 + ε)
L∑
`=1

Y` +
ζ

ε

]
.

By line [5], X` ∈ [0, 1] for each iteration `. By Lemma 3.6, for each iteration `,
E[X` | X1, . . . , X`−1, Y1, . . . , Y`] = Y`. Therefore, by Theorem 2.3 (a), we have

P

[
L∑
`=1

X` ≥ (1 + ε)

L∑
`=1

Y` +
ζ

ε

]
≤ (1 + ε)−ζ/ε,

as desired. �
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Lemma 3.9. For L ∈ N, and any i, −(1 + ε) ln
(
wL+1
i

)
≥ − ln

(〈
1, wL+1

〉
QL+1

)
.

Proof. Since QL+1 6= ∅, and wL+1
i ≥ exp(−(1 + ε)η) for any i ∈ QL+1, we have

ln
(〈

1, wL+1
〉
QL+1

)
≥ −(1 + ε)η.

If i /∈ Q̂, then wL+1
i ≤ exp(−η) because i is made inactive only if wi drops below exp(−η). Therefore,

−(1 + ε) ln
(
wL+1
i

)
≥ (1 + ε)η ≥ − ln

(〈
1, wL+1

〉
QL+1

)
.

If i ∈ Q̂, then wL+1
i ≤

〈
wL+1, 1

〉
QL+1 since all weights are nonnegative, and

− ln
(
wL+1
i

)
≥ − ln

(〈
wL+1,1

〉
QL+1

)
,

as desired. �

The lemma below relates the evolution of the logarithm of the sum of covering weights and the
time variable.

Lemma 3.10. For sufficiently small ε > 0, any L ∈ N, and any ζ > 0,

P
[
ln
(〈

1, wL+1
〉
QL+1

)
≥ ln(m)− (1−O(ε))ηtL+1 + ζ

]
≤ (1− ε)ζ/ε.

Proof. For ` = 1, . . . , L, let

X`
def
=

ln
(〈
w`,1

〉
Q`

)
− ln

(〈
w`+1,1

〉
Q`

)
ε

, and Y`
def
= ηδ`,

where each variable takes value 0 on indices ` > ˆ̀ after the algorithm terminates. Then
L∑
`=1

X` ≤ ln(m)− ln
(〈

1, wL+1
〉
QL+1

)
and

L∑
`=1

Y` =
η

ε
tL+1,

so

P
[
ln
(〈

1, wL+1
〉)
QL+1 ≥ ln(m)− (1−O(ε))ηtL+1 + ζ

]
= P

[
ln(m)− ln

(〈
1, wL+1

〉)
QL+1 ≤ (1−O(ε))ηtL+1 − ζ

]
≤ P

[
L∑
`=1

X` ≤ (1−O(ε))
L∑
`=1

Y` − ζ/ε

]
.

For each `, we have X` ∈ [0, 1], and by Lemma 3.7,

E[X` | X1, . . . , X`−1, Y1, . . . , Y`] ≥ (1−O(ε))Y`.

By Theorem 2.3, we have

P

[
L∑
`=1

X` ≤ (1−O(ε))
L∑
`=1

Y` − ζ/ε

]
≤ (1− ε)ζ/ε,

as desired. �
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Now we relate the load on covering constraint i to time.

Lemma 3.11. For sufficiently small ε > 0, and η = O(ln(m)/ε), and any i,

P
[〈
ei, Bx

L+1
〉
≥ (1−O(ε))tL+1 −O(ε)

]
≤ 1

poly(m)
.

Proof. Let ζ > 0 be a parameter to be specified later. We have

(1 + ε)η
〈
ei, Bx

L+1
〉
≥ − ln

(
wL+1
i

)
− ζ by Lemma 3.8,

≥ −(1− ε) ln
(〈
wL+1,1

〉
QL+1

)
− ζ by Lemma 3.9,

≥ (1−O(ε))(η + lnm)tL+1 − 2ζ

with total probability of failure ≤ (1− ε)ζ/ε + (1 + ε)−ζ/ε by the union bound. For ζ = O(lnm), we
have ζ/η = O(ε) and (1− ε)ζ/ε + (1 + ε)−zη/ε = 1/ poly(m), as desired. �

The preceding lemma shows that all covering constraints will be satisfied with high probability
if the algorithm terminates with t ≥ (1−O(ε)).

3.3 Iterations

In this section, we analyze the number of iterations taken by random-mwu, which we have yet to
even show is finite.

Lemma 3.12. With probability 1 − 1/poly(m), random-mwu terminates within
O
(
(mc + min{mp, n}) ln(m)/ε2

)
iterations and within O

(
m ln(m)/ε2

)
individual updates to

weights.

Proof. Consider the first L iterations, where L ∈ N is chosen to be sufficiently large as specified in
the statement. We will argue that the algorithm will terminate with high probability in less than
L iterations.

Every iteration ` ∈ [L], by choice of δ` in line [3], there exists either a packing constraint i ∈ P
such that

δ`η
〈
ei, Ay

`
〉

= ε,

or a covering constraint i ∈ Q` such that

δ`η
〈
ei, By

`
〉

= ε.

This constraint has its weight updated by a multiplicative factor of exp(ε) deterministically. That
is, every iteration updates at least one weight deterministically.

Since the algorithm terminates once w ≤ exp(−η)1, each covering constraint wi is only updated
by a factor of exp(ε) at most η/ε = O

(
ln(m)/ε2

)
times before before i is removed from Q`. Thus,

the total number of weight updates to covering constraints is at most O
(
m ln(m)/ε2

)
. Now we

consider weight updates to packing constraints. With high probability, by Lemma 3.4, we have〈
vL+1,1

〉
≤ mO(1/ε). In particular, we have vL+1

i ≤ mO(1/ε) with high probability for each packing
constraint i ∈ P. In such an event, a packing constraint vi can only be increased by a factor of
exp(ε) at most lnexp(ε)

(
mO(1/ε)

)
= O

(
ln(m)/ε2

)
before vi ≥ mO(1/ε).
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Thus, with high probability, each constraint has its weight updated by a factor of exp(ε) at
most O

(
ln(m)/ε2

)
times. The total number of weight updates, then, is with high probability,

O
(
m ln(m)/ε2

)
. If we charge each iteration to a constraint updated by a factor of exp(ε), then

there are at most O
(
m ln(m)/ε2

)
iterations. Thus the algorithm terminates, with high probability,

in O
(
m ln(m)/ε2

)
iterations.

We obtain a refined bound as follows. Recall that each iteration ` picks a solution y` which has a
single non-zero coordinate j ∈ [n]. Every time we select j, we either decreases a covering weight by a
(1 + ε)-multiplicative factor, or increase the same packing weight by a (1 + ε) multiplicative-factor;
this packing constraint corresponds to the bottleneck packing constraint for j (the row with the
largest coefficient in j’s column). If a packing weight is increased by an (1 + ε)-multiplicative factor,
then we can only select coordinate j O

(
ln(m)/ε2

)
times before this particular packing weight hits

the upper bound. Thus, charging each iteration to either a covering weight decreasing by a (1 + ε)-
multiplicative factor, or increase the same packing weight per coordinate by a (1 + ε)-multiplicative
factor, there are at most O

(
(mc + n) ln(m)/ε2

)
iterations. Taking the minimum of the two upper

bounds gives the upper bound we seek. �

Remark 3.13. The two concentration bounds – one ensuring correctness, and the other bounding
the running time – are obtained not separately but jointly: bottleneck operations are amortized
against the same invariants of the framework that ensure the correctness of the output.

3.4 Tying it all together

We restate and complete the proof of Theorem 2.1.

Theorem 2.1. Let A ∈ Rmp×n
≥0 and B ∈ Rmc×n

≥0 be nonnegative matrices for which there exists a
nonnegative x ∈ Rn≥0 such that Ax ≤ 1 and Bx ≥ 1. Let m = mp + mc, and let N be the total
number of nonzero coefficients in A and B.

With probability 1 − 1/ poly(m), random-mwu(A,B,ε) returns a point x̂ such that Ax̂ ≤
(1 +O(ε))1 and Bx̂ ≥ (1−O(ε))1 in O

(
(mc + min{mp, n}) ln(n)/ε2

)
iterations and, excluding

the time spent in lines [2] and [3], Õ
(
N +m ln(n)/ε2

)
time. Each packing weight vi, i ∈ P in-

creases along integral powers of exp(ε) from 1 to (at most) exp(ln(mp)/ε). Each covering weight
wi, i ∈ C decreases along integral powers of exp(ε) from 1 to exp(− ln(mc)/ε).

Proof. Let L = Θ((mc + min{mp, n}) ln(m)/ε2) be a sufficiently large but fixed number. Lemma
3.12 shows that with probability 1− 1/ poly(m) the algorithm terminates in less than L iterations.
Let E be the event that the algorithm terminates before L iterations. Conditioning on E , there is a
finite and well-defined total number of iterations, ˆ̀≤ L, a final time, t̂ = t

ˆ̀+1, and output x̂ = x
ˆ̀+1.

Note that the algorithm terminates only if the time variable reaches 1 or if Q is empty. Hence t̂ = 1

or Qˆ̀
= ∅.

Conditioning on E , Lemma 3.5, Lemma 3.11, Lemma 3.8 when applied to the fixed iteration L
imply that they hold for the last iteration ˆ̀< L since all the variables are frozen after the algorithm
terminates.

By Lemma 3.5 and union bound, Ax̂ ≤ (1 +O(ε)). By Lemma 3.11, Bx̂ ≥ (1−O(ε))t̂− O(ε).
If t̂ = 1, then Bx̂ ≥ (1−O(ε)), as desired. If t̂ < 1, then w`+1

i ≤ exp(−η) for all i ∈ [mc], so Bx̂ ≥
(1−O(ε)) by Lemma 3.8 and the union bound. Thus, conditioned on E , we have Ax̂ ≤ (1 +O(ε))
and Bx̂ ≥ (1−O(ε)) with probability 1 − 1/ poly(m). Since P[E ] ≥ 1 − 1/ poly(m) we have that
the desired claim on both the correctness of the output and the number of iterations. �
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apx-matrix

init(ε,δ,A)
x← 1
γ ← 1/δ
for each i ∈ [m]

reset(i)

reset(i)

[6] yi ←
∑
Aij 6=0

Aijxj

ỹi ← yi
for each Aij 6= 0

[7] log θij ←
⌊

log
ε2ỹi

ln(γ)Aij

⌋

inc(α ∈ R,j ∈ [n])
xj ← xj + α
let π ∈ [0, 1] random

[8] for each i s.t.
|α|
θij
≥ π

[9] yi ← yi + sign(α)Aij max{θij , |α|}
unless yi/2 ≤ ỹi ≤ 2yi

reset(i)

Figure 2: apx-matrix is a randomized data structure that, given a nonnegative matrix
A ∈ Rm×n

≥0 , efficiently maintains a relative and uniform approximation for Ax over the
lifetime of a nonnegative vector x ∈ Rn

≥0 initialized to 1 and monotonically either
increasing or decreasing (see Theorem 4.6).

4 Approximating nonnegative matrices

We recall Theorem 2.5 which describes a data structure for online maintenanace of Ax as x mono-
tonically increases. Since we also need to handle the case when x monotonically decreases we set
up the data structure and the setting in more generality.

Remark 4.1. For notational simplicity we choose the dimensions as A ∈ Rm≥0× and x ∈ Rn≥0.
However, when we apply the results in this section to analyze rand-mwu, we will be using it for the
transpose of m× n matrices, and m and n are swapped in the time bounds.

The data structure has two main routines. init takes as input a nonnegative matrix A ∈ Rm×n≥0 ,
error tolerance ε, and δ which controls the failure probability. inc takes two inputs, a real value α
and a coordinate j ∈ [n] to which the increment of α is to be applied. The data structure maintains
at all times maintains an estimate y of Ax which can be directly accessed. Here we state the setting
with additional details that will be useful in our application.

Setting 4.2. Let ε, δ > 0 with ε sufficiently small and δ sufficiently large. Let A ∈ Rm×n≥0 be a non-
negative matrix with N nonzeroes. Consider an instance of apx-matrix initialized by init(ε,δ,A).
Let L be a fixed parameter, and let inc(α1,j1), . . . , inc(αL,jL) be a sequence of calls to inc de-
livered online. For ` = 0, . . . , L, let x` = 1 +

∑`
k=1 αkejk . The online sequence is constrained in two

ways.

(i) Every αi has the same sign; i.e., x` is either monotonically increasing or monotonically de-
creasing.

(ii) For a fixed parameter β > 0, for every ` ∈ [L], and every nonzero Aij` 6= 0 incident to the `th
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update inc(α`,ej`), we have

1

β
〈ei, A1〉 ≤

〈
ei, Ax

`−1
〉
≤ β〈ei, A1〉.

apx-matrix maintains an estimate y of Ax. For ` ∈ [L], let y` be the value of y after the `th call
to inc.

High-level idea: The data structure is based in a simple idea related to online randomized main-
tenance of counters [26, 10]. Consider the online maintenance of a single number x (the one di-
mensional case) as we provide increments α1, . . . , αk. We maintain an estimate y. If the current
increment αi is small relative to the current estimate y we update y probabilistically; the cost here
is to actually add to y while we ignore the time to check αi/y. On the other hand if αi is large we
update y deterministically for otherwise we would incur too much variance. The key is take this
idea to higher-dimensional setting where y is a vector and each output coordinate is influenced by
multiple coordinates of A. To handle this we maintain the relative importance of each coordinate
with respect to the current estimate y (these are the values θij) and periodically reset and rescale
when the estimate y changes significantly (by a constant factor relatively) in any coordinate. Given
increment α to coordinate j we cannot afford to evaluate all the nonzero coordinates in row i for
that would defeat the purpose of improving the run-time. The same idea of correlated random
choice for weight updates is again used here.

Now we formally prove that our scheme maintains the estimate y correctly with high probability
when parameters are set appropriately. We will subsequently analyze the running time.

Lemma 4.3. Assuming Setting 4.2,

P
[
y` /∈ (1±O(ε))Ax` for any ` ∈ L

]
≤ L2m · poly(δ). (5)

Proof. Fix a row i ∈ [m]. We analyze the probability that yi ≈ 〈ei, Ax〉 after each increment, and
then take a union bound over all the rows at the end.

Let a “phase” be the sequence of calls to inc between consecutive calls to reset(i) (including
the last inc that triggers reset(i)). The last phase does not necessarily end with a reset. At the
beginning of a phase, yi is recomputed exactly in line [6]. We argue that, for a fixed phase, apx-
matrix maintains yi close to 〈ei, Axi〉 throughout the phase with high probability; we then take a
union bound over all the phases.

Fix a phase. Let x̄0 be the value of x at the beginning of the phase, and let ȳ0
i = Ax̄0 mark

the (recomputed) value of yi at the beginning of the phase. Let α1ej1 , α2ej2 , . . . be the increments
during the phase. By assumption, there are at most L increments in a phase, and padding the
end of the sequence with “zero” increments, we simply assume there are exactly L increments. For
` = 1, . . . , L, let x̄` = x̄0 +

∑`
k=1 αkejk and ȳ`i the value of yi after the `th increment is processed.

When the all the increments are positive or all the increments are negative, both
{
ȳ`i
}
and

{
x̄`
}
are

monotonic sequences in the same direction as the increments. Moreover, once y`i leaves the ranges
[ȳ0
i /2, 2ȳ

0
i ], the phase ends and all the increments thereafter are zero. We want to show that ȳ`i ≈ x̄`

for every ` ∈ [L] with high probability.
We first consider the increasing case, where α` ≥ 0 for each `. Then

{
x̄`
}

and
{
ȳ`i
}

are
monotonically increasing, and the phase ends when ȳ`i ≥ 2ȳ0

i . Noting that γ = 1/δ, we define random

variables Z1, Z2, . . . ZL ≥ 0 by Z` =
ln(γ)(ȳ`i−ȳ

`−1
i )

ε2ȳ0i
. For each ` ∈ [L], we have E[Z`] =

ln(γ)α`Aij`

ε2ȳ0i
. If

α` 6= 0, then y`i ≤ 2ȳ0
i . By choice of the importance sampling thresholds θij in line [7], we have

ln(δ)θij`Aij`

ε2ȳ0i
≤ 1, hence
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Z` > 1 only if |α`| > θij` only if Z` = α`Aij` deterministically.

Each Z`, conditional on the preceding ` − 1 increments, still satisfies E
[
(1 + ε)Z`

]
≤ (1 + ε)E[Z`]

and E
[
(1− ε)Z`

]
≤ (1− ε)E[Z`], so the conclusion of Theorem 2.3 still holds (and can be re-derived

with standard techniques). By Theorem 2.3, we have

P
[
y`i ≥ (1 + ε)

〈
ei, Ax̄

`
〉]

= P
[
ȳ`i − ȳ0

i ≥ (1 + ε)
〈
ei, Ax̄

`
〉
− ȳ0

i

]
= P

[
ȳ`i − ȳ0

i ≥ (1 + ε)
〈
ei, A

(
x̄` − x̄0

)〉
+ εȳ0

i

]
= P

[∑̀
k=1

Zk ≥
(1 + ε) ln(γ)

ε2ȳ0
i

∑̀
k=1

αkAijk +
ln(γ)

ε

]
≤ (1 + ε)− ln(γ)/ε = poly(δ)

and

P
[
ȳ`i ≤ (1− ε)

〈
ei, Ax̄

`
〉]
≤ P

[
ȳ`i − y0

o ≤ (1− ε)
〈
ei, A

(
x̄` − x̄0

)〉
− εȳ0

i

]
= P

[
ȳ`i − ȳ0

i ≤ (1− ε)
〈
ei, A(x̄` − x̄0)

〉
− εȳ0

i

]
= P

[∑̀
k=1

Zk ≤
(1 + ε) ln(γ)

ε2ȳ0
i

∑̀
k=1

αkAijk −
ln(γ)

ε

]
≤ (1 + ε)− ln(γ)/ε = poly(δ).

There are at most L increments in the phase. By the union bound, we have

P
[
ȳ`i /∈ (1± ε)

〈
ei, Ax̄

`
〉
for any ` ∈ [L]

]
≤ 2Lpoly(δ). (6)

There are also at most L phases. By the union bound, all increments in all phases are accurate in
the sense of (6) with probability of failure L · 2Lpoly(δ) = 2L2 poly(δ). Finally, we take a union
bound over all coordinates i ∈ [m], and conclude that the probability of any coordinate failing is at
most L2mpoly(δ).

The decreasing case, where α` ≤ 0 for each `, is somewhat symmetric, with additional care
required at the end. We confine our attention to a single phase. The sequences

{
ȳ`i
}

and
{
x̄`
}

are monotonically decreasing, and freeze when ȳ`i ≤ ȳ0
i /2. We define Z1, Z2, · · · ≥ 0 by the scaled

decrease, Z` =
ln(γ)(ȳ`−1

i −ȳ`i)
ε2ȳ0i

. For each ` ∈ [L], we have E[Z`] =
ln(γ)α`Aij`

ε2ȳ0i
. By choice of the sampling

threshold θij` in [7], we have ln(δ)θij`Aij`

ε2ȳ0i
≤ 1, hence

Z` > 1 only if |α| > θij` only if Z` =
ln(δ)Aij`

α`

ε2ȳ0i
deterministically.

Each Z`, conditional on the previous `− 1 iterations, still satisfies E
[
(1 + ε)Z`

]
≤ (1 + ε)E[Z`] and

E
[
(1− ε)Z`

]
≤ (1− ε)E[Z`], so the proof and theorem of Theorem 2.3 still holds. By Theorem 2.3,

then, we have

P
[
ȳ`i ≤

〈
ei, Ax̄

`
〉
− 2εȳ0

i

]
= P

[
ȳ0
i − ȳ`i ≥ (1 + ε)

〈
ei, A(x̄0 − x̄`)

〉
− εȳ0

i

]
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= P

[∑̀
k=1

Zk ≥
(1 + ε) ln(γ)

ε2ȳ0
i

∑̀
k=1

αjAijk +
ln(γ)

ε

]
≤ (1 + ε)− ln(γ)/ε = poly(δ)

and

P
[
ȳ`i ≥

〈
ei, Ax̄

`
〉

+ 2εȳ0
i

]
= P

[
ȳ0
i − ȳ`i ≤ (1− ε)

〈
ei, A(x̄0 − x̄`)

〉
− εȳ0

i

]
= P

[∑̀
k=1

Zk ≤
(1− ε) ln(γ)

ε2ȳ0
i

∑̀
k=1

αkAijk −
ln(γ)

ε

]
≤ (1− ε)ln(γ)/ε = poly(δ).

If ȳ`i < ȳ0
i /2, then apx-matrix will recompute ȳ`i and ensure exact accuracy. If ȳ`i ≥ ȳ0

i /2, then we
have

(1− 4ε)ȳ`i ≥
〈
ei, Ax̄

`
〉
only if ȳ`i ≥

〈
ei, Ax̄

`
〉

+ εȳ0
i , and

(1 + 4ε)ȳ`i ≤
〈
ei, Ax̄

`
〉
only if ȳ`i ≤

〈
ei, Ax̄

`
〉
− εȳ0

i ,

as desired. As in the increasing case, via the union bound, the above holds for all L increments of
all L phases and over all coordinates i ∈ [m] with probability L2m poly(δ). (5) then follows. �

Now we analyze the running time of the data structure for a sequence of L increments. Note
that the parameter β does not play a role in the correctness but it does play a role in the running
time. This is natural for the following reason. Imagine a setting in which all increments are double
the current sum. Then the algorithm will be forced to deterministically compute the exact sum in
each step to be accurate. The lemma below bounds the number of times that reset is called for
each row i ∈ [m].

Lemma 4.4. Assuming Setting 4.2, with probability 1− poly(m,L, δ), reset(i) is called O(log β)
times for each row i ∈ [m].

Proof. With probability 1− poly(m,L) poly(δ), we have y ∈ (1± ε)Ax at all times. Assume this is
the case, and fix i ∈ [m].

In the increasing case, where α` ≥ 0 for all `, we have 〈ei, A1〉 ≤ 〈ei, Ax〉 ≤ β〈ei, A1〉 for any
constraint i. reset(i) is invoked only when yi > 2ỹi, where ỹi was the exact value of 〈ei, Ax〉 earlier
in the process, and then both yi and ỹi are reset to the current, exact value of 〈ei, Ax〉. Consider a
call to inc(α,j) that triggers a reset(i). Let y′i and x

′ denote the values of yi and x before the
call, and let y′′i and x′′ denote the values of yi and x after line [9] (but before invoking reset(i)).
If y′′i − y′i ≤ 2ε2

δ y
′
i, then〈
ei, Ax

′′〉 ≥ 〈ei, Ax′〉 ≥ (1− ε)y′i ≥ (1−O(ε))y′′i ≥ 2(1−O(ε))ỹi,

hence 〈ei, Ax〉 has increased by a (constant) multiplicative factor of (1−O(ε))2. If y′′i − y′i ≥ 2ε2

δ y
′
i,

then α > θij and y′′i − y′i = αAij , hence〈
ei, Ax

′′〉 =
〈
ei, Ax

′〉+ y′′i − y′i
≥ (1−O(ε))y′i + 2ỹi − y′i
≥ 2(1−O(ε))ỹi,
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so again 〈ei, Ax〉 has increased by a multiplicative factor of 2(1−O(ε)). It follows that reset(i) is
called at most O

(
log(1−O(ε))2 β

)
= O(log β) times.

In the decreasing case, where α` ≥ 0 for all `, we have 1
β 〈ei, Ax〉 ≤ 〈ei, Ax〉 ≤ 〈ei, Ax〉 for any

constraint i. We claim that each time we call reset(i), 〈ei, Ax〉 has decreased by a (1±O(ε))2
multiplicative factor. Indeed, consider a call to inc(α,ej) that triggers a reset(i). Let y′i and x

′

denote the values of yi and x before the call, and let y′′i and x′′ denote the values of yi and x after
line [9] (but before invoking reset(i)). If y′i − y′′i ≤ 2ε2

δ y
′
i, then〈

ei, Ax
′〉 = (1 + ε)y′i ≤ (1 +O(ε))y′′i ≤

(1 +O(ε))ỹi
2

,

so 〈ei, Ax′′〉 has dropped by a (constant) multiplicative factor of (1−O(ε))2. If y′i − y′′i ≥ 2ε2

δ y
′
i,

then α > θij and y′i − y′′i = αAij , so〈
ei, Ax

′′〉 =
〈
ei, Ax

′〉+ y′′i − y′i

≤ (1 +O(ε))y′i +
ỹi
2
− y′i

≤ (1 +O(ε))ỹi
2

,

so 〈ei, Ax′′〉 is a constant multiple of (1−O(ε))2 smaller than ỹi. Since 〈ei, Ax〉 lies in a range con-
tained in a multiplicative factor of β, reset(i) is invoked at most O

(
log(1−O(ε))2(β)

)
= O(log(β))

times. �

The final step in the analysis is to specify how the loop in line [8] is implemented.

Lemma 4.5. Fix j ∈ [n]. One can organize the thresholds {θij : Aij 6= 0} such that for a call
inc(α,j), all coordinates i satisfying line [8] can be listed in O(logm) time plus O(1) per satisfying
coordinate. The total time to initialize and maintain the data structure is O(N log(β) log(m)).

Proof. Setting 4.2 implies that each coordinate of Ax that is still subject to change lies within a
β-multiplicative factor of its initial value in A1. For each column j, we build a balanced binary tree
over the nonzeroes Aij 6= 0 keyed by θij . All the trees can be built in O(N logm) time total. For
a call inc(α,j), the first coordinate i satisfying line [8] can be found in log(m) time in the tree;
each subsequent coordinate takes O(1) time per coordinate. Whenever a threshold θij changes, the
corresponding tree can be updating in O(logm) time. Each θij is updated at most log β times. The
running time follows.

�

To finish the analysis we note that each yi is updated O( log(1/δ)
ε2

) time between two reset oper-

ations. Thus the total work for satisfied coordinates is O
(
m log β log(1/δ)

ε2

)
. Combining the above,

we have the following.

Theorem 4.6. Assuming Setting 4.2, for δ = 1/ poly(m,L), apx-matrix maintains y ∈
(1±O(ε))Ax in O

(
L(log(m) + log log β) +N(log(m) + log log β) log β +m log(β)(logm+logL)

ε2

)
total

time with probability of failure 1/ poly(m,L).
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4.1 Finalizing random-mwu

In this section, we gather the different components developed in Section 3 and Section 4 to prove
Theorem 1.2. We first obtain crude bounds on the variation of nonzeroes within each column of A
or B.

Lemma 4.7. Without loss of generality, for each j ∈ [n],

maxiAij
mini{Aij : Aij 6= 0}

= O(poly(n, 1/ε)),
maxi{Bij}

mini{Bij : Bij 6= 0}
= O(poly(n, 1/ε)).

Proof. For each j, let αj = maxiAij . Then x ≤ 1/α for any feasible solution x to (NMPC), and
x ≤ (1 +O(ε))/α for any (1±O(ε))-feasible solution.

Let A′ ∈ Rmp×n
≥0 be defined by

A′ij =

{
Aij if Aij ≥ αj

poly(n,1/ε) ,

0 otherwise.

Any x satisfying A′x ≤ (1 +O(ε))1 must satisfy x ≤ (1 +O(ε))α. Moreover, since 0 ≤ Aij −A′ij ≤
αj/poly(n, 1/ε), for any x with A′x ≤ (1 +O(ε)), we have

Ax = A′x+ (A−A′)x ≤ A′x+
1

poly(n, 1/ε)
1 ≤ (1 +O(ε))1.

Replacing A with A′, it suffices to assume that αjAij ≥ αj/ poly(n, 1/ε) for every nonzero Aij .
As for B, we first observe that Bij ≥ poly(n, 1/ε)α, then adding (1/ poly(n, 1/ε)α)ej meets the

covering constraint for row i, while Aej/α poly(n, 1/ε) ≤ ε/n has negligible effect on the packing
constraints. Removing any row i with such a large Bij and rewriting the system as though we
have taken (1/ poly(n, 1/ε)α)ej can be done in linear time, and allows us to assume that Bij ≤
poly(n, 1/ε)αj for all i, j. Finally, define B′ ≤ B by

B′ij =

{
Bij if B′ij ≥ α/poly(n, 1/ε),

0 otherwise.

Clearly, Bx ≥ (1−O(ε)) only if B′x ≥ 1−O(ε). On the flip side, if Ax ≤ 1 +O(ε) but 〈ei, B′x〉 ≤
1 +O(ε) for some i, then x ≤ (1 +O(ε))/α,

〈ei, Bx〉 ≤
〈
ei, B

′x
〉

+ α
〈
ei, (B −B′)1

〉
≤ 1−O(ε) + poly(ε/n) ≤ (1−O(ε)).

Thus we may work with B′ instead of B without loss of generality. �

We now restate and prove Theorem 1.2.

Theorem 1.2. Given a normalized mixed packing and covering problem (NMPC), random-mwu
returns a ε-relative approximation in

O

(
N log2m

ε
+
m log2m

ε2
+
n log(m)(log(m) + log(n))

ε3

)
= Õ

(
N

ε
+
m

ε2
+
n

ε3

)
time with probability 1− 1/poly(m).
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Proof. By Theorem 2.1, it remains to implement lines [2] and [3] within the running time stated.
Recall that if the original problem (NMPC) is feasible, then any feasible solution to (NMPC)

satisfies (*) and (**) of line [2] even without the (1±O(ε)) factors. Moreover, if (NMPC) is
feasible, then [2] is solved by finding an approximately best bang-for-buck coordinate j such that

〈w,Bej〉Q
〈v,Aej〉

≥ (1−O(ε)) max
̂∈[n]

〈w,Bê〉Q
〈v,Aê〉

, and taking y =
〈w,B1〉Q
〈w,Bej〉Q

ej .

We employ the apx-matrix data structure to maintain (1±O(ε))-relative coordinate-wise ap-
proximations of AT v and BTw. By Lemma 4.7, all the nonzero coefficients within a row of A or
within a row of B lie within a poly(n, 1/ε)-multiplicative factor of one another. The vectors v and
w both start at 1, and any nonzero coordinate is in the range m−O(1/ε) or mO(1/ε). We also know
that there are at most O

(
m log(m)/ε2

)
iterations. Thus, maintaining AT v and BTw approximately

corresponds to Setting 4.2 for β = mO(1/ε) poly(n, 1/ε) and L = O
(
(min{mp, n}+mc) log(m)/ε2

)
.

Also recall that since we are working with AT and BT the roles of m,n have to be interchanged
in the bounds guaranteed by Theorem 4.6. By Theorem 4.6, the data structure maintains an
(1± ε)-approximation of every coordinate of AT v and BTw at all times in

O

(
(min{mp, n}+mc) log2m

ε2
+
N log2m

ε
+
n log(m)(log(m) + log(n))

ε3

)
= Õ

(
N

ε
+
m

ε2
+
n

ε3

)
total time, with probability of failure 1/ poly(m), as desired. We observe that the randomness in
the internals of the data structure is independent of the randomness in weight update step.

Beyond maintaining each coordinate of AT v and BTw, implementing the oracle in [2] within
the stated bounds is easy by the following well-known “lazy-greedy” technique. To satisfy [2], it
suffices to find a coordinate j approximately maximizing the ratio

〈w,Bej〉Q
〈v,Aej〉

and returning y =
〈w,1〉Q
〈w,Bej〉

ej .

The coordinate-wise approximations provided by apx-matrix allow us to compute a (1±O(ε))-
approximation of a coordinates ratio in constant time. To repeatedly find an approximately best
coordinate, let λ = supj〈1, Bej〉/〈1, Aej〉 be the maximum ratio initially. When line [2] is invoked,
we process the coordinates in round robin order until we either find a coordinate j with ratio
≥ (1−O(ε))λ or, should no satisfying coordinate j, setting λ ← (1−O(ε))λ and repeating the
search. (A round-robin sweep always begins where the last round-robin search ended in the previous
oracle call.) Every time we compute a ratio can be charged to the oracle call (if the coordinate
is returned) or the current value of λ. Moreover, the range of values taken by λ lies within a β2-
multiplicative factor of its initial value, where β = mO(1/ε) poly(n/ε). Therefore, λ is decreased at
most

O
(

log1/(1−O(ε)) β
2
)

= O

(
log(m)

ε2
+

log(n)

ε

)
times over the course of the algorithm. It follows that the total time processing coordinates is
O
(
m
(
log(m)/ε2 + log(n)/ε

))
plus O(1) for each iteration, as desired. �

5 An overview of applications

In this section we give a brief overview of some abstract and concrete applications where mixed
packing and covering problems arise. Theorem 1.2 applies to any explicitly given problem and gives
a speed up if the matrices A,B are sufficiently dense. Here we also point out implicit instances
where the randomized version is useful.
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5.1 Linear system solving in the positive orthant

Consider the problem of solving Ax = 1, x ≥ 0 where A ∈ Rm×n≥0 is a non-negative matrix. It is easy
to see that it is a special case of (NMPC). Young [35] points out applications of this problem to
x-ray tomography. We also observe that this formulation captures the LP relaxation of the perfect
b-matching problem in graphs and hypergraphs. See [12] for an application of hypergraph matching
in the field of medicine via the solution of the LP relaxation and randomized rounding.

5.2 Separating over non-negative polytopes and an application to spanning
trees

Another basic application of solving Ax = 1, x ≥ 0 is the following problem. Suppose we are given
a polytope P and a point p, both in the non-negative orthant Rd≥0. We would like to decide if p ∈ P
and if it is, express p as a convex combination of the vertices of P . Depending on the application,
P can be given explicitly as a the convex hull of a given set of of n points V = {v1, v2, . . . , vn} in
Rd≥0, or implicitly. We consider the explicit case first. p is in the convex hull of V iff the following
system is feasible: Ax = p,

∑
i xi = 1, x ≥ 0 where the columns of A are v1, . . . , vn. Thus, it is a

special case of (NMPC).
In the implicit setting there are a number of applications in combinatorial optimization. We

give a concrete example. Consider the following problem. Given a graph G = (V,E) let ST(G) be
the spanning tree polytope of G; in other words it is the convex hull of the characteristic vectors
of the spanning trees of G (note that the dimension of the polytope is m where m is the number
of edges of G). Given z ∈ Rm≥0 we would like to know whether z ∈ ST(G) and if so decompose z
into a convex combination of spanning trees. This a fundamental problem and there are a number
of applications including recent rounding algorithms for TSP and ATSP (see [32]).

In recent work [6] we developed a near-linear time approximation scheme to pack the maximum
number of spanning trees in a given graph by using fast MWU based algorithm. As a corollary, [6]
obtains a separation oracle for the dominant of ST(G). In particular, if z ∈ ST(G), the algorithm
outputs a convex combination of spanning trees such that the load on any edge e is at most (1+ε)ze.
However, it does not guarantee that the load on e is at least (1 − ε)ze. Hence many edges with
strictly positive ze value can be unused in the convex decomposition. This is acceptable in several
applications but not in others. Via the algorithm in this paper for (NMPC), and some of the
ideas in [6], we can obtain a near-linear time randomized algorithm for separating over ST(G),
which in particular implies that we can approximately decompose a given point z ∈ ST(G) into a
convex combination of spanning trees in near-linear time. The decomposition guarantees a convex
combination such that for each edge e the load on e from the convex combination is between (1−ε)ze
and (1 + ε)ze.

5.3 Min-Max Linear/Integer Programs and Resource Allocation

A number of applications in resource allocation, routing, and scheduling can be cast as min-max
integer programs and their LP relaxations turn out to be mixed packing and covering LPs. Random-
ized rounding via sophisticated techniques including the Lovasz-Local-Lemma and its constructive
versions have led to a number of important results in approximation — see [30, 16] for the general
framework, rounding algorithms, and applications. Here we point out a simple application, namely,
routing paths to minimize congestion which finds applications in several areas including VLSI and
optical networks. The input consists of a (directed) graph G = (V,E) and k source-sink pairs
(si, ti), i ∈ [k]. In the explicit setting we are given for each pair (si, ti) a collection of `i paths Pi
that connect si to ti. The goal is to choose for each pair i, exactly one path from Pi, to minimize
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the edge congestion from the chosen paths. We can model this as follows. For each pair i we have
`i indicator variables xij , j ∈ [`i]. The goal is to solve the following integer program

minλ

Ax ≤ λ1∑
j∈[`i]

xij ≥ 1 i ∈ [k]

xij ∈ {0, 1} i ∈ [k], j ∈ [`i]

where A is the incidence matrix between the path collection ∪iPi and the edges of G. The LP
relaxation is a mixed packing and covering LP (for a given guess of λ) and is extensively used in
approximation algorithm design. Using the LP one can obtain an O(log d/ log log d)-approximation
for the minimum congestion problem where d is the maximum path length in ∪iPi [30, 16]. In the
version we described above, the paths are explicitly given for each pair. In the implicit setting Pi
is the set of all paths from si to ti (or say all paths with at most some prescribed length), and the
resulting LP is the maximum concurrent multicommodity flow problem which has been extensively
studied.

Another way to interpret the allocation constraints in min-max integer program is the following.
We think of them as inducing a partition matroid base constraint on the variables. One can further
extend the framework by allowing an arbitrary matroid base constraint on the variables. These
constraints also result in a mixed packing LP. One can then use a variety of dependent randomized
rounding techniques.

5.4 Constrained Set Cover

Set cover is a fundamental and abstract problem that arises in numerous applications. In the explicit
version we are given a collection of sets S1, S2, . . . , Sm over a universe U of n elements and the goal
is to find a minimum cardinality or minimum cost sub-collection of the given sets whose union is U .
One can express the LP relaxation of this problem as a pure covering problem and there is extensive
work in analyzing the integrality gap in various settings. We note that when expressed as a covering
LP, the number of nonzeroes N in the matrix corresponds to the number of set-element edges in
the bipartite graph representation of the set system.

There are several natural and simple generalizations of set cover that result in a mixed packing
and covering LP. One variant is the multicover problem with bounds on the sets. Here each element
e ∈ U has an integer requirement re for the number of distinct sets that e should be covered by.
Moreover each set Si has an upper bound ui on the number of copies it can be used for; the simplest
setting being that ui = 1 for all i. The upper bounds naturally lead to a mixed packing and covering
LP. A generalization of this problem to covering integer programs with upper bounds was considered
in Kolliopoulos and Young [20]. We also mention that more sophisticated upper bound constraints
on the sets, such as partition matroid constraints, appear in various applications [31].

5.5 Implicit problems with structured incidences

In [6] we consider the following simple geometric problem. We are given n closed intervals I1, . . . , In
on the real line specified by their endpoints Ii = [ai, bi]. Each interval has a nonnegative value vi and
a non-negative size di. We are also given m points p1, . . . , pm ∈ R on the real line, and each point pj
has a capacity gj > 0. The goal is to choose a subset of the intervals of maximum value such that the
total size of chosen intervals at any point is at most the capacity of the point. This is equivalent to
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the well-studied unsplittable flow problem (UFP) on paths. These problems and their variants have
been well-studied in a variety of contexts and have numerous applications. Note that the problem
description size is O(m + n). The underlying LP relaxation for the preceding problem, if written
explicitly, can have N = Ω(mn) nonzeroes corresponding to the incidences between the intervals
and points. [6] showed that MWU techniques for packing problems with some data structures can
be adapted to obtain a (1 + ε) approximation to the LP relaxation in Õ

(
(m+ n)/ε2

)
time, avoiding

the need to explicitly work with the incidence matrix. The techniques in this paper can extend
those results for mixed packing and covering setting; for instance, the points can have lower bounds
on how many intervals need to cover them. The main data structure that enabled the speedup in
the case of intervals is the segment tree which interfaces cleanly with the needs of the deterministic
MWU framework in [6].

As we remarked, the randomized version of MWU in this paper was motivated by applications
that did not admit a similar improvement. Consider the problem where we have disks and points
in the plane and we wish to solve problems such as the maximum weight independent set or the
minimum cost set cover. Here too the problem description size is considerably more compact than
the explicit matrix that encodes the incidences between the given disks and points. Unlike intervals
and rectangular boxes, disks and other more complex objects do not admit the same type of dynamic
range search data structures that can be used in the framework of [6]. In contrast, random-mwu and
apx-mtarix considerably simplify the requirements on the data structure. This is enabled by the
particularly simple threshold based sampling used in both of them. For instance, one can use
ideas from emptiness and approximate depth estimation oracles [3] instead of using dynamic range
reporting data structures that have strong lower bounds even in 2 and 3 dimensions. We defer
formal details to a future paper.

5.6 Facility Location and k-median

Facility location and k-median are extensively studied optimization problems. The natural LP for
facility location and k-median is not a positive LP. However, one can reformulate facility location
as an implicit covering LP. Young [36] shows that one can obtain an Õ(nm/ε2) run-time to solve
a facility location LP with n facilities and m clients. The k-median and its minimum cost versions
can be cast as implicit mixed packing and covering LPs and [34] gives a (1 + ε)-approximation in
Õ
(
kmn/ε2

)
time. We note that the assumption here is that all distances between facilities and clients

are explicitly given and they may not form a metric. Here the natural problem size is mn. In future
work we plan to address whether we can obtain a running time of the form Õ(mn/ε+ (m+ n)/ε3)
for these problems via the techniques in this paper.
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A Jensen’s inequality

Lemma A.1 (Jensen’s inequality). Let X ∈ R be a random variable and f : R→ R a function.

(a) If f is convex, then f(E[X]) ≤ E[f(X)].

(b) If f is concave, then f(E[X]) ≥ E[f(X)].
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