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(Metric) Subtour Elimination

Input:

Objective:
min

X

e2E

cexe over x 2 RE

s.t.

X

e2C (v)

xe = 2 for all vertices v;

X

e2C (U)

xe � 2 for all sets U 6= ;, V ;

and 0  x  1

equivalent to Held-Karp bound

degree 
constraints

eliminates
subtours

clique Kn = (V,E)Kn = (V,E), metric c : E ! R�0c : E ! R�0
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2-edge connected spanning subgraph

Input: graph G = (V,E)G = (V,E) with cuts CC

Objective:

(2ECSS)

X

e2E

ceyemin
over y 2 RE

X

e2C
ye � 2 for all cuts

C 2 C

y � 0Eand

s.t.

1
2

1 1

11
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11

nonnegative edge costs c 2 RE
�0c 2 RE
�0

equivalent 
to subtour 

elimination 
on metric 

completion 
of (G, c)(G, c)
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cut packings knapsack problems

w  1/cweights
0

1

2
Õ(m/✏2)iterations

initialize edgemax

X

C2C
xC over x 2 RC

s.t.
X

C3e

xC  ce e 2 E

x � 0C

for each e 2 E

w
e
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✏
P

C3e

xC
ce
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h

P
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ch

!
w

e

Multiplicative weight updates
MWU

solve relaxation
max

X

C

xC s.t. x � 0,
X

c,e:e2c

wexc 
X

e

wece

3 output convex 
combination of 

relaxed solutions
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Õ(m/✏2)iterations

initialize edge

for each e 2 E

w
e

 exp

 
✏
P

C3e

xC
ce

max

h

P
C3h

xC
ch

!
w

e

Multiplicative weight updates
MWU

solve relaxation
max

X

C

xC s.t. x � 0,
X

c,e:e2c

wexc 
X

e

wece

1 solve relaxation…

a

b

C  min-cut(G,w)

x hw, ciP
e2T we

eT
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cut packings min-weight cuts

w  1/cweights
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Õ(m/✏2)iterations
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edge updates 
per cut

Õ(m/✏2) iterations⇥

running timeÕ(m2/✏2)

⌦(m)
2 for e 2 C, we  · · ·

a C  min-cut(G,w)

Õ(m) per min cut
Õ(m/✏2) iterations⇥

running timeÕ(m2/✏2)



From Õ(m2/✏2)Õ(m2/✏2) to Õ(m/✏2)Õ(m/✏2)

min-cut oracle weight update

what we
have

what we
need

Õ(m) per min cut edges per cut

Õ(1)
(1 + ✏)-apx min-cut

amor. per amortized 
time per cutÕ(1)

⌦(m)

additional
challenges

no suitable dynamic data structures
min-cut varies dramatically 
between iterations
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Karger’s Õ(m)Õ(m) min-cut algorithm

1. Randomly contract edge. Repeat.



Karger’s Õ(m)Õ(m) min-cut algorithm

1. Randomly contract edge. Repeat.

1. Pack spanning trees

2. Randomly sample O(log n)O(log n) trees

Search each sampled tree for 
min-cut induced by 11 or 22 edges 
by dynamic programming

3.
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Tree packings and network strength

Input:

Objective:

graph G = (V,E)G = (V,E) w/ spanning trees TT
and positive edge capacities c 2 REc 2 RE

max

X

T2T
xt

s.t.

X

T3e

xT  ce for each edge e

x � 0T

over x 2 RT

-apx tree packings in(1� ✏) Õ(m) time via either:
- sparsification [Karger 00] - MWU [CQ SODA17]
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Undirected graph w/ min cut  has 
a tree packing of value � /2� /2

Nash-WilliamsTutte 1961

Tight for cycle
- min cut = 2
- tree-packing = 1



Undirected graph w/ min cut  has 
a tree packing of value � /2� /2

Nash-WilliamsTutte 1961

0  PP  be a (1� ✏)(1� ✏)-apx max tree packinglet
 CC be a (1 + ✏)(1 + ✏)-apx min cut

1 each edge e 2 Ce 2 C is in a tree T 2 PT 2 P

avg # CC-edges per tree2
=

|C|
|P | 

(1 + ✏)

(1� ✏)/2
= 2 +O(✏)

3 Markov )) const. fraction of 
trees have < 3< 3 CC-edges



Karger’s Õ(m)Õ(m) min-cut algorithm

1. Randomly contract edge. Repeat.

1. Pack spanning trees

2. Randomly sample O(log n)O(log n) trees

Search each sampled tree for 
min-cut induced by 11 or 22 edges 
by dynamic programming

3.



D(x)

“u < vu < v” means uu is a 
descendant of vv

Fix a rooted tree TT   )) poset on VV

 “v k wv k w” means vv and ww  
are incomparable

“D(x)D(x)” means all 
descendants of xxu

v w

x



check value in GG of each cut
induced by  2 2 edges in TT 

s

s

t
s

t

C (D(s))

C (D(s) [D(t))

C (D(t) \D(s))

1-cut
incomparable 2-cut

nested 2-cut

(C (S) =C (S) = edges cut by SS)

1
2

3

(where s k ts k t)
(where s  ts  t)



sum of 
weighted degrees

s

C (D(s))

1-cut1

w(C (D(s))) =
X

v2D(s)

X

e2C (v)

w(e)�
X

e2E[D(s)]

w(e)
weight of cut

weighted 
degree

weight of edges 
contained in D(s)D(s)

Tree sums over 
weighted degrees 

 O(m)O(m) time total 
over all s

Tree sums over 
weights at lca’s

 Õ(m)Õ(m) time total 
over all s

build up sums in dynamic 
trees and read off weights

[C (X) = w(C (X))C (X) = w(C (X))]



2-cuts are a little more complicated…

nested 2-cut with a leaf3

t

s

C (D(t)� s)

C (D(t)� s) = C (D(t))� C (s) + 2C (D(t)� s, s)

independent 
of tt

1. init each vv to C (D(v))C (D(v))

2. for each e = (s, v)e = (s, v)

  a. add 2w(e)2w(e) to each u � vu � v

3. find min value over
     all u � su � sve

+2w(e)

Link-Cut trees
 add/min along v !v ! root 

path in Õ(1)Õ(1) time

Õ(deg(s))

nested 2-cut with 
a path to a leaf3

C (D(t)�D(si)) =
C (D(t))� C (D(si)) + 2C (D(t) \D(si), D(si))

t

s1

s2

s`

C (D(t) \D(si))

1. process s1s1 like a leaf
2. for i = 2, . . . , `i = 2, . . . , `
  a. keep aggr. values from si�1si�1

  b. process edges incident
     to sisi kinda like leaf case
3. return best min over all ii

C (D(t) \D(si), D(si)) = C (D(t) \D(si�1), D(si�1)

+C (D(t) \D(si), si)� C (D(si�1), si)

slightly more complicated adjustment 
between consecutive D(si)D(si)

Õ(deg(s1, . . . , s`))

induction step3

1. process each path
   to a leaf
2. contract each path 
   into its parent
3. recurse

each leaf in new graph 
had � 2� 2 children before

number of nodes 
is halved

+

s

t

incomparable 2-cut 
with a leaf

2

already
computed

cut between 
ss and D(t)D(t)

C (D(t))� 2C (s,D(t))

1. init each vv to C (D(v))C (D(v))

2. add 11 to all v > sv > s

3. for each e = (s, v)e = (s, v)

  a. subtract 2w(e)2w(e) from
     all u � vu � v

4. for each e = (s, v)e = (s, v)

  a. find min value over
     all u � vu � v

+1

v

�2w(e)

e

Link-Cut trees
  (a) add along v !v ! root path
  (b) get min over v !v ! root path

in Õ(1)Õ(1) time
Õ(deg(s))

t

incomparable 2-cut 
with a path to a leaf2

already
computed

1. process s1s1 like a leaf
2. for i = 2, . . . , `i = 2, . . . , `
  a. keep aggr. values from si�1si�1

  b. process edges incident
     to sisi like a leaf
3. return best min over all ii

C (D(t))� 2C (D(si), D(t))

s1

s2

s`�1

s`

C (D(si), D(t)) =

C (D(si�1), D(t)) + C (si, D(t))
consecutive D(si)D(si) are closely related

Õ(deg(s1, . . . , s`))

induction step2

1. process each path
   to a leaf
2. contract each path 
   into its parent
3. recurse

each leaf in new graph 
had � 2� 2 children before

number of nodes 
is halved

+
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  b. process edges incident
     to sisi like a leaf
3. return best min over all ii

C (D(t))� 2C (D(si), D(t))

s1

s2

s`�1

s`

C (D(si), D(t)) =

C (D(si�1), D(t)) + C (si, D(t))
consecutive D(si)D(si) are closely related
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+

reduces to dynamic programming 
with dynamic trees



Incremental setting

edge weights incremented online (adversarially)

need to maintain (1 + ✏)(1 + ✏)-apx min cut



Incremental Karger’s algorithm

initially: � �  initial value of min-cut, 
pack and sample log nlog n spanning trees

when we need an apx min-cut:
continue Karger’s search until we find a cut 
of value  (1 + ✏)� (1 + ✏)�, output and pause the search
if good cut not found, then re-pack/sample trees

when we increment an edge weight
incorporate into tree sums w/ dynamic trees



From Õ(m2/✏2)Õ(m2/✏2) to Õ(m/✏2)Õ(m/✏2)

min-cut oracle weight update

what we
have

what we
need

Õ(m) per min cut edges per cut

Õ(1)
(1 + ✏)-apx min-cut

amor. per amortized 
time per cutÕ(1)

⌦(m)

what we
get

total timeÕ(m/✏2)

Õ(1) per min cut+

Õ(1)+ per edge inc
??



Updating edge weights along cuts

need to update weights of all edges in a cut

we know how to update fixed sets efficiently 
[Young ’14, Chekuri-Q SODA17]

problem: cuts vary dramatically between iterations

key point: all cuts are induced by trees 



r

a b

c d

[s�, s+]

[r�, s�)

(s+, r+]

r� < a� < a+ < b� < c� <

c+ < d� < d+ < c+ < r+

Euler tour converts subtrees to 
intervals

Range tree decomposes each 
side of a 1,2-cut to log nlog n 
“canonical subtrees”

this decomposes each 1,2-cut to log2 nlog

2 n 
“canonical cuts” between canonical subtrees



Updating edge weights along cuts

need to update weights of all edges in a cut

we know how to update fixed sets efficiently 
[Young ’14, Chekuri-Q SODA17]

problem: cuts vary dramatically between iterations

key point: all cuts are induced by trees 
“canonical cuts” with total size Õ(m)Õ(m)

+ => log2 nlog

2 n efficient updates on fixed sets



From Õ(m2/✏2)Õ(m2/✏2) to Õ(m/✏2)Õ(m/✏2)

min-cut oracle weight update

what we
have

what we
need

Õ(m) per min cut edges per cut

Õ(1)
(1 + ✏)-apx min-cut

amor. per amortized 
time per cutÕ(1)

⌦(m)

what we
get

total timeÕ(m/✏2)

Õ(1) per min cut+

Õ(1)+ per edge inc

init time
Õ(1) per min cut+

+

Õ(m/✏2)

Õ(m/✏2) edge
increments
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The main result. In this paper we obtain a near-linear running time for a (1 + ✏)-approximation,
substantially improving the best previously known running time bound.

Theorem 1.1. Let G = (V, E) be an undirected graph with |E| = m edges and |V| = n vertices,
and positive edge weights c : E ! R>0

. For any fixed ✏ > 0, there exists a randomized algorithm
that computes a (1 + ✏)-approximation to the Held-Karp lower bound for the Metric-TSP instance
on (G, c) in O(m log4 n/✏2) time. The algorithm succeeds with high probability.

The algorithm in the preceding theorem can be modified to return a (1+✏)-approximate solution
to the 2ECSS LP within the same asymptotic time bound. For fixed ✏, the running time we achieve
is asymptotically faster than the time to compute or even write down the metric completion of
(G, c). Our algorithm can be applied low-dimensional geometric point sets to obtain a running-time
that is near-linearly in the number of points.

In typical approximation algorithms that rely on mathematical programming relaxations, the
bottleneck for the running time is solving the relaxation. Surprisingly, for algorithms solving Metric-
TSP via the Held-Karp bound, the bottleneck is no longer solving the relaxation (albeit we only
find a (1 + ✏)-approximation and do not guarantee a basic feasible solution). We mention that the
recent approaches towards the 4/3 conjecture for Metric-TSP are based on variations of the classical
Christofides heuristic (see [Vygen, 2012]). The starting point is a near-optimal feasible solution x
to the 2ECSS LP on (G, c). Using a well-known fact that a scaled version of x lies in the spanning
tree polytope of G, one generates one or more (random) spanning trees T of G. The tree T is then
augmented to a tour via a min-cost matching M on its odd degree nodes. Genova and Williamson
[2017] recently evaluated some of these Best-of-Many Christofides’ algorithms and demonstrated
their effectiveness. A key step in this scheme, apart from solving the LP, is to decompose a given
point y in the spanning tree polytope of G into a convex combination of spanning trees. Our recent
work [Chekuri and Quanrud, 2017b] shows how to achieve a (1 � ✏)-approximation for this task
in near-linear time; the algorithm implicitly stores the decomposition in near-linear space. One
remaining bottleneck to achieve an overall near-linear running time is to compute an approximate
min-cost perfect matching on the odd-degree nodes of a given spanning tree T . In recent work
[Chekuri and Quanrud, 2017a], we have been able to overcome this bottleneck in one way. We
obtain a randomized algorithm which uses a feasible solution x to 2ECSS LP as input, and outputs
a perfect matching M on the odd-degree nodes of T whose expected cost is at most (1

2

+ ✏) times
the cost of x. Combined with our algorithm in Theorem 1.1, this leads to a

�
3

2

+ ✏
�
-approximation

for Metric-TSP in Õ(m/✏2 + n1.5/✏3) time. If the metric space is given explicitly, then the overall
run time is Õ(n2/✏2) and near-linear in the input size. Previous implementations of Christofides’
algorithm required ⌦(n2.5 log 1

✏ ) time to obtain a (3
2

+ ✏)-approximation even when the metric space
is given explicitly.

1.1 Integrated design of the algorithm

Our algorithm is based on the multiplicative weight update framework (MWU), and like Plotkin,
Shmoys, and Tardos [1995], we approximate the pure packing LP 2ECSSD. Each iteration requires
an oracle for computing the global minimum cut in an undirected graph. A single minimum cut
computation takes randomized near-linear-time via the algorithm of [Karger, 2000], and the MWU
framework requires ⌦̃(m/✏2) iterations. Suprisingly, the whole algorithm can be implemented to
run in roughly the same time as that required to compute one global mincut.

While the full algorithm is fairly involved, the high-level design is directed by some ideas devel-
oped in recent work by the authors [Chekuri and Quanrud, 2017b] that is inspired by earlier work
of Mądry [2010] and Young [2014]. We accelerate MWU-based algorithms for some implicit packing

3



Held-Karp for Metric TSP

Packing cuts

Dynamic min cuts
(and updates)

Part 1Part 2

Part 3

Fast implementation
 of Christofides’ algo

Recent work



Christofides’ heuristic [1976]

bottlenecks include all-pairs shortest paths, 
min-cost perfect matching on dense graph

simple (& best) 3/2-approximation for metric TSP

(Recent work)

-apx to 2ECSS =>

 (1 + ✏)
3

2
(1 + ✏)

3

2
-apx in Õ(n1.5/✏3)Õ(n1.5/✏3) time

Õ(m/✏2 + n1.5/✏3) time total

(1 + ✏)

=>



Thanks!
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