Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs

Sariel Har-Peled Kent Quanrud
University of Illinois at Urbana-Champaign
October 19, 2015

Gameplan

1. Pregame

- definition of problems - a hardness result

2. Low-density objects and graphs

- basic properties - overview of results

3. Polynomial expansion

- basic properties - overview of results halftime!

4. Two proofs

- independent set - dominating set

Fat objects

Hitting set

Input: Set of points \mathcal{P}, fat objects \mathcal{F}
Output: The smallest cardinality subset of \mathcal{P} that pierces every object in \mathcal{F}.

Hitting set

©

○

\bigcirc

\bigcirc

Input: Set of points \mathcal{P}, fat objects \mathcal{F}
Output: The smallest cardinality subset of \mathcal{P} that pierces every object in \mathcal{F}.

Set cover

Input: Set of points \mathcal{P}, fat objects \mathcal{F}
Output: Find the smallest cardinality subset of \mathcal{F} that covers every point in \mathcal{P}.

Output: Find the smallest cardinality subset of \mathcal{F} that covers every point in \mathcal{P}.

Disks and Pseudo-disks

Disks and Pseudo-disks

Set Cover.

NP-Hard Feder and Greene 1988
PTAS Mustafa, Raman and Ray 2014

Hitting Set

NP-Hard

PTAS

Feder and Greene 1988
Mustafa and Ray 2010

Set cover

$O(1)$ approx. for fat triangles of same size Clarkson and Varadarajan 2007

Set cover

$O\left(\log ^{*}\right.$ OPT $)$ for fat objects in \mathbb{R}^{2} Aronov, de Berg, Ezra and Sharir 2014

Hitting set

$O(\log \log$ OPT) for fat triangles of similar size

Aronov, Ezra and Sharir 2010

Fat, nearly equilateral triangles

Set cover

- APX-Hard

Hitting set

- APX-Hard

Fat, nearly equilateral triangles

Set cover

- APX-Hard

Hitting set

- APX-Hard

Fat, nearly equilateral triangles
Set cover

- APX-Hard

Hitting set

- APX-Hard

Fat, nearly equilateral triangles

Set cover

- APX-Hard Hitting set
- APX-Hard

Fat, nearly equilateral triangles Set cover

- APX-Hard Hitting set
- APX-Hard

2

Fat, nearly equilateral triangles
Set cover

- APX-Hard

Hitting set

- APX-Hard

Fat, nearly equilateral triangles Set cover

- APX-Hard Hitting set
- APX-Hard

Fat, nearly equilateral triangles Set cover

- APX-Hard Hitting set
- APX-Hard

Fat, nearly equilateral triangles

Set cover

- APX-Hard

Hitting set

- APX-Hard

Density

\mathcal{F} has density ρ if any ball intersects $\leq \rho$ objects with larger diameter. van der Stappen, Overmars, de Berg, Vleugels, 1998

Density

\mathcal{F} has density ρ if any ball intersects $\leq \rho$ objects with larger diameter. van der Stappen, Overmars, de Berg, Vleugels, 1998
 objects with larger diameter. van der Stappen, Overmars, de Berg, Vleugels, 1998
 objects with larger diameter. van der Stappen, Overmars, de Berg, Vleugels, 1998

Density

van der Stappen, Overmars, de Berg, Vleugels, 1998

Intersection graphs

\mathcal{F} induces an intersection graph $G_{\mathcal{F}}$ with objects as vertices and edges representing overlap.

Intersection graphs

\mathcal{F} induces an intersection graph $G_{\mathcal{F}}$ with objects as vertices and edges representing overlap.

Intersection graphs

\mathcal{F} induces an intersection graph $G_{\mathcal{F}}$ with objects as vertices and edges representing overlap.

Intersection graphs

A graph has low-density if induced by low-density objects.

Examples of low density

Interior disjoint disks have $O(1)$ density.

Planar graphs have $O(1)$-density via Circle Packing Theorem.

Koebe, Andreev, Thurston

Planar graphs have $O(1)$-density via Circle Packing Theorem.

Koebe, Andreev, Thurston

Fat convex objects in \mathbb{R}^{d} with depth k have density $O\left(k 2^{d}\right)$.

Fat convex objects in \mathbb{R}^{d} with depth k have density $O\left(k 2^{d}\right)$.

Examples of low density

Fat convex objects in \mathbb{R}^{d} with depth k have density $O\left(k 2^{d}\right)$.

Examples of low density

Fat convex objects in \mathbb{R}^{d} with depth k have density $O\left(k 2^{d}\right)$.

Examples of low density

Fat convex objects in \mathbb{R}^{d} with depth k have density $O\left(k 2^{d}\right)$.

Examples of low density

Fat convex objects in \mathbb{R}^{d} with depth k have density $O\left(k 2^{d}\right)$.

Additivity

red density $=\rho_{1}$

Additivity
blue density $=\rho_{2}$

Additivity

red density $=\rho_{1}$

blue density $=\rho_{2}$

Additivity

red density $=\rho_{1}$

+ blue density $=\rho_{2}$

Additivity

red density $=\rho_{1}$

+ blue density $=\rho_{2}$
total density $\leq \rho_{1}+\rho_{2}$

Degeneracy

If \mathcal{F} has density ρ, then the smallest object intersects at most $\rho-1$ other objects.

Degeneracy

If \mathcal{F} has density ρ, then the smallest object intersects at most $\rho-1$ other objects.

Degeneracy

If \mathcal{F} has density ρ, then the smallest object intersects at most $\rho-1$ other objects.

Separators

For $k \leq|\mathcal{F}|$, compute a sphere S that

- Strictly contains at least $k-o(k)$ objects and at most k objects.
- Intersects $O\left(\rho+\rho^{1 / d} k^{1-1 / d}\right)$ objects.

Miller, Teng, Thurston, and Vavasis, 1997; Smith and Wormald, 1998; Chan 2003

Graph minors

A minor of G is a graph H obtained by contracting edges, deleting edges, and deleting vertices.

Graph minors

A minor of G is a graph H obtained by contracting edges, deleting edges, and deleting vertices.

Graph minors

A minor of G is a graph H obtained by contracting edges, deleting edges, and deleting vertices.

Graph minors

A minor of G is a graph H obtained by contracting edges, deleting edges, and deleting vertices.

Graph minors

A minor of G is a graph H obtained by contracting edges, deleting edges, and deleting vertices.

Graph minors

A minor of G is a graph H obtained by contracting edges, deleting edges, and deleting vertices.

Graph minors

A minor of G is a graph H obtained by contracting edges, deleting edges, and deleting vertices.

Graph minors

A minor of G is a graph H obtained by contracting edges, deleting edges, and deleting vertices.

Graph minors

A minor of G is a graph H obtained by contracting edges, deleting edges, and deleting vertices.

Graph minors

A minor of G is a graph H obtained by contracting edges, deleting edges, and deleting vertices.

Minors of objects

\mathcal{G} is a minor of \mathcal{F} if it can be obtained by deleting objects and taking unions of overlapping of objects.

Minors of objects

\mathcal{G} is a minor of \mathcal{F} if it can be obtained by deleting objects and taking unions of overlapping of objects.

Minors of objects

\mathcal{G} is a minor of \mathcal{F} if it can be obtained by deleting objects and taking unions of overlapping of objects.

Minors of objects

\mathcal{G} is a minor of \mathcal{F} if it can be obtained by deleting objects and taking unions of overlapping of objects.

Minors of objects

\mathcal{G} is a minor of \mathcal{F} if it can be obtained by deleting objects and taking unions of overlapping of objects.

Minors of objects

\mathcal{G} is a minor of \mathcal{F} if it can be obtained by deleting objects and taking unions of overlapping of objects.

Large clique minors

Large clique minors

Large clique minors

Large clique minors

Large clique minors

Shallow minors

A vertex in H corresponds to a connected cluster of vertices in G.

Shallow minors

H is a t-shallow minor if each cluster induces a graph of radius t.

Shallow minors

H is a 1-shallow minor if each cluster induces a graph of radius 1 .

Shallow minors

H is a 2 -shallow minor if each cluster induces a graph of radius 2 .

Shallow minors of objects

Each object in the minor corresponds to a cluster of objects in \mathcal{F}.

Shallow minors of objects

An object minor is a t-shallow minor if the intersection graph of each cluster has radius $\leq t$.

Shallow minors of objects

An object minor is a 1-shallow minor if the intersection graph of each cluster has radius ≤ 1.

Shallow minors of objects

An object minor is a 2 -shallow minor if the intersection graph of each cluster has radius ≤ 2.

Shallow minors of objects

An object minor is a 3-shallow minor if the intersection graph of each cluster has radius ≤ 3.

Shallow minors of low-density objects

A t-shallow minor of objects with density ρ has density $O\left(t^{O(d)} \rho\right)$

Shallow minors of

 low-density objects

A t-shallow minor of objects with density ρ has density $O\left(t^{O(d)} \rho\right)$

A t-shallow minor of objects with density ρ has density $O\left(t^{O(d)} \rho\right)$

Shallow minors of

 low-density objects

A t-shallow minor of objects with density ρ has density $O\left(t^{O(d)} \rho\right)$

Shallow minors of

 low-denity objects

A t-shallow minor of objects with density ρ has density $O\left(t^{O(d)} \rho\right)$

Recap: low-density graphs are...

(a) additive

(c) separable
(b) degenerate (hence sparse)

(d) kind of closed under shallow minors

Main result: low-density

$\rho=O(1)$: PTAS for hitting set, set cover, subset dominating set
$\rho=$ polylog $(n):$ QPTAS for same problems.
No PTAS under ETH.

Main result: low-density

\bigcirc
\bigcirc
\bigcirc
\bigcirc

density ρ	$O(1)$	polylog (n)	unbounded
hardness	NP-Hard	No PTAS	APX-Hard
algo	PTAS	QPTAS	

And now for something completely different...

Shallow edge density

The r-shallow density of a graph is the max edge density over all r-shallow minors.

aka "greatest reduced average density"
Nešetřil and Ossona de Mendez, 2008

Sparsity is not enough

Hide a clique by splitting the edges

Sparsity is not enough

Hide a clique by splitting the edges

Expansion

The expansion of a graph is the r-shallow density as a function of r.

e.g. constant expansion, polynomial expansion, exponential expansion Nešetřil and Ossona de Mendez, 2008

Examples of expansion

Planar graphs have constant expansion (Euler's formula)

Minor-closed classes have constant expansion

Sparsity is not enough

Constant degree expanders have exponential expansion

Wikipedia

Low density \Rightarrow polynomial expansion

Graphs with density ρ have polynomial expansion $f(r)=O\left(\rho r^{d}\right)$

Low density \Rightarrow nomial expansion

Graphs with density ρ have polynomial expansion $f(r)=O\left(\rho r^{d}\right)$

expansion

 examplesconstant
planar graphs, minor-closed families
low-density graphs
exponential
expander graphs

Recap: low-density graphs are...

(a) additive

(c) separable
(b) degenerate (hence sparse)

(d) kind of closed under shallow minors

Lexical product $G \bullet K_{h}$

The lexical product $G \bullet K_{h}$ blows up each vertex in G with the clique K_{h}.

Lexical product $G \bullet K_{h}$

The lexical product $G \bullet K_{h}$ blows up each vertex in G with the clique K_{h}.

Lexical product $G \bullet K_{h}$

$$
\begin{aligned}
& V\left(G \bullet K_{4}\right)=V(G) \times V\left(K_{4}\right) \\
& E\left(G \bullet K_{4}\right)= \\
& \left.\left.\quad\left\{\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \mid a_{1}=a_{2}\right)\right)\right\}
\end{aligned}
$$

Lexical product $G \bullet K_{h}$

$$
\begin{aligned}
& V\left(G \bullet K_{4}\right)=V(G) \times V\left(K_{4}\right) \\
& E\left(G \bullet K_{4}\right)= \\
& \left.\left.\quad\left\{\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \mid a_{1}=a_{2}\right)\right)\right\} \\
& \quad \bigcup^{\left.\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \mid\left(a_{1}, a_{2}\right) \in E(G)\right\}}
\end{aligned}
$$

The lexical product $G \bullet K_{h}$ blows up each vertex in G with the clique K_{h}.

Lexical product $G \bullet K_{h}$

$$
\begin{aligned}
& V\left(G \bullet K_{4}\right)=V(G) \times V\left(K_{4}\right) \\
& E\left(G \bullet K_{4}\right)= \\
& \left.\left.\quad\left\{\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \mid a_{1}=a_{2}\right)\right)\right\} \\
& \quad \bigcup^{\left.\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \mid\left(a_{1}, a_{2}\right) \in E(G)\right\}}
\end{aligned}
$$

If G has polynomial expansion, then $G \bullet K_{h}$ has polynomial expansion.

Small separators

Graphs with subexponential expansion have sublinear separators.

Nešetřil and Ossona de Mendez (2008)

Small separators

Graphs with subexponential expansion have sublinear separators.

Nešetřil and Ossona de Mendez (2008)
Why?

Small separators

Graphs with subexponential expansion have sublinear separators.

Nešetřil and Ossona de Mendez (2008)

Why?

1. No K_{h} as an ℓ-shallow minor implies a separator of size $O\left(n / \ell+4 \ell h^{2} \log n\right)$. Plotkin, Rao, and Smith (1994)

Small separators

Graphs with subexponential expansion have sublinear separators.

Nešetřil and Ossona de Mendez (2008)
Why?

1. No K_{h} as an ℓ-shallow minor implies a separator of size $O\left(n / \ell+4 \ell h^{2} \log n\right)$. Plotkin, Rao, and Smith (1994)
2. Small expansion $=>$ small clique minors as a function of depth

Shallow minors of polynomial expansion

Shallow minors of graphs with polynomial expansion have polynomial expansion.
(If H is an r_{1}-shallow minor of G, then an r_{2}-shallow minor of H is an $\left(r_{1} \cdot r_{2}\right)$-shallow minor of G, and $\operatorname{poly}\left(r_{1} \cdot r_{2}\right)=\operatorname{poly}\left(r_{2}\right)$.)

Recap: polynomial expansion graphs are...

(a) closed under lexical product
via separator for excluded shallow minors
(c) separable
(b) degenerate
FREE
(d) kind of closed under shallow minors

Main result:

 polynomial expansion

 polynomial expansion}

- Graph G with polynomial expansion
- PTAS for (subset) dominating set
- Extensions: multiple demands, reach, connected dominating set, vertex cover.

PTAS for independent set

Recap: low-density graphs are...

(a) additive

(c) separable
(b) degenerate (hence sparse)

(d) kind of closed under shallow minors

Balanced separators

Input: $G=(V, E)$ with n vertices.
Output: Partition $V=X \sqcup S \sqcup Y$ s.t.
(a) $|X|,|Y| \leq .99 n$.
(b) $|S| \leq n^{.99}$.
(c) No edges run between X and Y.

Balanced separators

Input: $G=(V, E)$ with n vertices.
Output: Partition $V=X \sqcup S \sqcup Y$ s.t.
(a) $|X|,|Y| \leq .99 n$.
(b) $|S| \leq n^{.99}$.
(c) No edges run between X and Y.

Balanced separators

Input: $G=(V, E)$ with n vertices.
Output: Partition $V=X \sqcup S \sqcup Y$ s.t.
(a) $|X|,|Y| \leq .99 n$.
(b) $|S| \leq n^{.99}$.
(c) No edges run between X and Y.

Well-separated divisions

Input: $G=(V, E) \mathrm{w} / n$ vertices, $\epsilon \in(0,1)$
Output: Cover $V=C_{1} \cup C_{2} \cup \cdots \cup C_{m}$ s.t.
(a) $\left|C_{i}\right|=\operatorname{poly}(1 / \epsilon)$ for all i
(b) No edges between $C_{i} \backslash C_{j}$ and $C_{j} \backslash C_{i}$
(c) $\sum_{i}\left|C_{i}\right| \leq(1+\epsilon) n$

Well-separated divisions

Input: $G=(V, E) \mathrm{w} / n$ vertices, $\epsilon \in(0,1)$
Output: Cover $V=C_{1} \cup C_{2} \cup \cdots \cup C_{m}$ s.t.
(a) $\left|C_{i}\right|=\operatorname{poly}(1 / \epsilon)$ for all i
(b) No edges between $C_{i} \backslash C_{j}$ and $C_{j} \backslash C_{i}$
(c) $\sum_{i}\left|C_{i}\right| \leq(1+\epsilon) n$

Well-separated divisions

Input: $G=(V, E) \mathrm{w} / n$ vertices, $\epsilon \in(0,1)$
Output: Cover $V=C_{1} \cup C_{2} \cup \cdots \cup C_{m}$ s.t.
(a) $\left|C_{i}\right|=\operatorname{poly}(1 / \epsilon)$ for all i
(b) No edges between $C_{i} \backslash C_{j}$ and $C_{j} \backslash C_{i}$
(c) $\sum_{i}\left|C_{i}\right| \leq(1+\epsilon) n$

Well-separated divisions

Input: $G=(V, E) \mathrm{w} / n$ vertices, $\epsilon \in(0,1)$
Output: Cover $V=C_{1} \cup C_{2} \cup \cdots \cup C_{m}$ s.t.
(a) $\left|C_{i}\right|=\operatorname{poly}(1 / \epsilon)$ for all i
(b) No edges between $C_{i} \backslash C_{j}$ and $C_{j} \backslash C_{i}$
(c) $\sum_{i}\left|C_{i}\right| \leq(1+\epsilon) n$

Local search

local-search $(G=(V, E), \epsilon)$
$L \leftarrow \emptyset, \lambda \leftarrow \operatorname{poly}(1 / \epsilon)$
while there exists $S \subseteq V$ s.t.
(a) $|S| \leq \lambda$
(b) $L \triangle S$ is an independent set
(c) $|L \triangle S|>|L|$
do $L \leftarrow L \triangle S$
end while
return L

Independent set: proof setup

O : Optimal solution
L : λ-locally optimal sol'n for $\lambda=\operatorname{poly}(1 / \epsilon)$

Independent set: proof setup

O : Optimal solution
L : λ-locally optimal sol'n for $\lambda=\operatorname{poly}(1 / \epsilon)$
$O \sqcup L$ has low density (by additivity)

Independent set: proof setup

O : Optimal solution
L : λ-locally optimal sol'n for $\lambda=\operatorname{poly}(1 / \epsilon)$
$O \sqcup L$ has low density (by additivity)
$\left\{C_{1}, \ldots, C_{m}\right\}$: w.s.-division of $O \sqcup L$

Independent set: proof setup

O : Optimal solution
L : λ-locally optimal sol'n for $\lambda=\operatorname{poly}(1 / \epsilon)$
$O \sqcup L$ has low density (by additivity)
$\left\{C_{1}, \ldots, C_{m}\right\}$: w.s.-division of $O \sqcup L$
$B_{i}=C_{i} \cap\left(\bigcup_{j \neq i} C_{j}\right), b_{i}=\left|B_{i}\right|$
$O_{i}=\left(O \cap C_{i}\right) \backslash B_{i}, o_{i}=\left|O_{i}\right|$
$L_{i}=\left(L \cap C_{i}\right), \ell=\left|L_{i}\right|$,

Independent set: proof setup

O : Optimal solution
L : λ-locally optimal sol'n for $\lambda=\operatorname{poly}(1 / \epsilon)$
$O \sqcup L$ has low density (by additivity)
$\left\{C_{1}, \ldots, C_{m}\right\}$: w.s.-division of $O \sqcup L$
$B_{i}=C_{i} \cap\left(\bigcup_{j \neq i} C_{j}\right), b_{i}=\left|B_{i}\right|$
$O_{i}=\left(O \cap C_{i}\right) \backslash B_{i}, o_{i}=\left|O_{i}\right|$
$L_{i}=\left(L \cap C_{i}\right), \ell=\left|L_{i}\right|$,

PTAS for dominating set

Recap: low-density graphs are...

(a) additive

(c) separable
(b) degenerate (hence sparse)

(d) kind of closed under shallow minors

Local search

local-search $(G=(V, E), \epsilon)$
$L \leftarrow V, \lambda \leftarrow \operatorname{poly}(1 / \epsilon)$
while there exists $S \subseteq V$ s.t.
(a) $|S| \leq \lambda$
(b) $L \triangle S$ is a dominating set
(c) $|L \triangle S|<|L|$
do $L \leftarrow L \triangle S$
end while
return L

Flowers

Glue an object in the dominating set with the neighboring objects it dominates.

Flowers

Glue an object in the dominating set with the neighboring objects it dominates.

Flowers

Glue an object in the dominating set with the neighboring objects it dominates.

Flowers

Glue an object in the dominating set with the neighboring objects it dominates.

Dominating set: proof setup
$O=$ optimal solution, $\tilde{O}=$ flowers of O
$L=$ locally-optimal sol'n, $\tilde{L}=$ flowers of L

Dominating set: proof setup
$O=$ optimal solution, $\tilde{O}=$ flowers of O
$L=$ locally-optimal sol'n, $\tilde{L}=$ flowers of L
$\tilde{O} \cup \tilde{L}$ has low density

Dominating set: proof setup

 $O=$ optimal solution, $\tilde{O}=$ flowers of O $L=$ locally-optimal sol'n, $\tilde{L}=$ flowers of $L$$$
\tilde{O} \cup \tilde{L} \text { has low density }
$$

$\left\{\tilde{C}_{1}, \ldots, \tilde{C}_{m}\right\}:$ w.s.-division of $\tilde{O} \cup \tilde{L}$

Dominating set: proof setup

$O=$ optimal solution, $\tilde{O}=$ flowers of O
$L=$ locally-optimal sol' $n, \tilde{L}=$ flowers of L

$\tilde{O} \cup \tilde{L}$ has low density

$\left\{\tilde{C}_{1}, \ldots, \tilde{C_{m}}\right\}$: w.s.-division of $\tilde{O} \cup \tilde{L}$
$\left\{C_{1}, \ldots, C_{m}\right\}$: centers of \tilde{C}_{i} for each i

Dominating set: proof setup

$O=$ optimal solution, $\tilde{O}=$ flowers of O
$L=$ locally-optimal sol'n, $\tilde{L}=$ flowers of L

$\tilde{O} \cup \tilde{L}$ has low density

$\left\{\tilde{C}_{1}, \ldots, \tilde{C}_{m}\right\}$: w.s.-division of $\tilde{O} \cup \tilde{L}$
$\left\{C_{1}, \ldots, C_{m}\right\}$: centers of \tilde{C}_{i} for each i $B_{i}=C_{i} \cap\left(\bigcup_{j \neq i} C_{j}\right)$
$O_{i}=O \cap C_{i}, o_{i}=\left|O_{i}\right|$
$L_{i}=L \cap C_{i}, \ell_{i}=\left|L_{i}\right|$

Dominating set: proof setup

$O=$ optimal solution, $\tilde{O}=$ flowers of O
$L=$ locally-optimal sol'n, $\tilde{L}=$ flowers of L

$\tilde{O} \cup \tilde{L}$ has low density

$\left\{\tilde{C}_{1}, \ldots, \tilde{C}_{m}\right\}$: w.s.-division of $\tilde{O} \cup \tilde{L}$
$\left\{C_{1}, \ldots, C_{m}\right\}$: centers of \tilde{C}_{i} for each i $B_{i}=C_{i} \cap\left(\bigcup_{j \neq i} C_{j}\right)$
$O_{i}=O \cap C_{i}, o_{i}=\left|O_{i}\right|$
$L_{i}=L \cap C_{i}, \ell_{i}=\left|L_{i}\right|$
thanks!

References |

G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput., 16(6): 1004-1022, 1987.
J. Nešetřil and P. Ossona de Mendez. Grad and classes with bounded expansion ii. algorithmic aspects. European J. Combin., 29(3):777-791, 2008.

References II

S. Plotkin, S. Rao, and W.D. Smith. Shallow excluded minors and improved graph decompositions. In Proc. 5th ACM-SIAM Sympos. Discrete Algs. (SODA), pages 462-470, 1994.

