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Gameplan
1. Pregame

- definition of problems - a hardness result

2. Low-density objects and graphs
- basic properties - overview of results

3. Polynomial expansion
- basic properties - overview of results

halftime!
4. Two proofs

- independent set - dominating set
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Fat objects

vol(b ∩ f )
vol(b)

= Ω(1)
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Hitting set

Input: Set of points P , fat objects F
Output: The smallest cardinality subset of
P that pierces every object in F .
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Output: Find the smallest cardinality
subset of F that covers every point in P .
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Disks and Pseudo-disks
Set Cover

NP-Hard Feder and Greene 1988

PTAS Mustafa, Raman and Ray 2014

Hitting Set

NP-Hard Feder and Greene 1988

PTAS Mustafa and Ray 2010



Fat objects

Set cover

O(1) approx. for fat triangles of same size
Clarkson and Varadarajan 2007



Fat objects

Set cover

O(log∗OPT) for fat objects in R2

Aronov, de Berg, Ezra and Sharir 2014



Fat objects

Hitting set

O(log log OPT) for fat triangles of similar
size

Aronov, Ezra and Sharir 2010



Fat, nearly equilateral triangles

Set cover
I APX-Hard

Hitting set
I APX-Hard
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Density

F has density ρ if any ball intersects ≤ ρ

objects with larger diameter.
van der Stappen, Overmars, de Berg, Vleugels, 1998
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Density

F has low density if ρ = O(1).
van der Stappen, Overmars, de Berg, Vleugels, 1998



Intersection graphs

F induces an intersection graph GF
with objects as vertices and edges
representing overlap.
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F induces an intersection graph GF
with objects as vertices and edges
representing overlap.



Intersection graphs

A graph has low-density if induced by
low-density objects.



Examples of low density

Interior disjoint disks have O(1) density.



Examples of low density

Planar graphs have O(1)-density via Circle
Packing Theorem.

Koebe, Andreev, Thurston
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Examples of low density

Fat convex objects in Rd with depth k have
density O(k2d).
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Examples of low density

rr
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Fat convex objects in Rd with depth k have
density O(k2d).
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red density = ρ1
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Additivity

red density = ρ1
blue density = ρ2

total density ≤ ρ1 + ρ2

+



Degeneracy

If F has density ρ, then the smallest object
intersects at most ρ− 1 other objects.
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Degeneracy

If F has density ρ, then the smallest object
intersects at most ρ− 1 other objects.



Separators
For k ≤ |F|, compute a sphere S that
I Strictly contains at least k − o(k)
objects and at most k objects.

I Intersects O(ρ + ρ1/dk1−1/d) objects.

cR

r

3r

Miller, Teng, Thurston, and Vavasis, 1997;
Smith and Wormald, 1998; Chan 2003



Graph minors

A minor of G is a graph H obtained by
contracting edges, deleting edges, and
deleting vertices.
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Minors of objects

G is a minor of F if it can be obtained by
deleting objects and taking unions of
overlapping of objects.
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Shallow minors

A vertex in H corresponds to a connected
cluster of vertices in G.
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induces a graph of radius t.
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H is a 1-shallow minor if each cluster
induces a graph of radius 1.



Shallow minors

H is a 2-shallow minor if each cluster
induces a graph of radius 2.



Shallow minors of objects

Each object in the minor corresponds to a
cluster of objects in F .



Shallow minors of objects

An object minor is a t-shallow minor if
the intersection graph of each cluster has
radius ≤ t.



Shallow minors of objects

An object minor is a 1-shallow minor if
the intersection graph of each cluster has
radius ≤ 1.



Shallow minors of objects

An object minor is a 2-shallow minor if
the intersection graph of each cluster has
radius ≤ 2.



Shallow minors of objects

An object minor is a 3-shallow minor if
the intersection graph of each cluster has
radius ≤ 3.



Shallow minors of
low-density objects

A t-shallow minor of objects with
density ρ has density O(tO(d)ρ)



Shallow minors of
low-density objects

A t-shallow minor of objects with
density ρ has density O(tO(d)ρ)



Shallow minors of
low-density objects

A t-shallow minor of objects with
density ρ has density O(tO(d)ρ)



Shallow minors of
low-density objects

A t-shallow minor of objects with
density ρ has density O(tO(d)ρ)



Shallow minors of
low-density objects

A t-shallow minor of objects with
density ρ has density O(tO(d)ρ)



Recap: low-density graphs are...

red density = ρ1
blue density = ρ2

total density ≤ ρ1 + ρ2

+

(a) additive (b) degenerate (hence sparse)

cR

r

3r

(c) separable (d) kind of closed under
shallow minors



Main result: low-density

ρ = O(1): PTAS for hitting set, set cover,
subset dominating set

ρ = polylog(n): QPTAS for same problems.
No PTAS under ETH.



Main result: low-density

density ρ O(1) polylog(n) unbounded

hardness NP-Hard No PTAS APX-Hard

algo PTAS QPTAS



Main result: fat triangles

depth
density ρ

O(1) polylog(n) unbounded

hardness NP-Hard No PTAS APX-Hard

algo PTAS QPTAS





Shallow edge density
The r-shallow density of a graph is the
max edge density over all r-shallow minors.

aka “greatest reduced average density”
Nešetřil and Ossona de Mendez, 2008



Sparsity is not enough

Hide a clique by splitting the edges
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Expansion
The expansion of a graph is the r-shallow
density as a function of r.

e.g. constant expansion, polynomial
expansion, exponential expansion

Nešetřil and Ossona de Mendez, 2008



Examples of expansion

Planar graphs have constant expansion
(Euler’s formula)

Minor-closed classes have constant expansion



Sparsity is not enough

Constant degree expanders have exponential
expansion

Wikipedia



Low density ⇒
polynomial expansion

Graphs with density ρ have polynomial
expansion f (r) = O(ρrd)



Low density ⇒
polynomial expansion

Graphs with density ρ have polynomial
expansion f (r) = O(ρrd)



expansion examples

constant
planar graphs,

minor-closed families

polynomial low-density graphs

exponential expander graphs



Recap: low-density graphs are...

red density = ρ1
blue density = ρ2

total density ≤ ρ1 + ρ2

+

(a) additive (b) degenerate (hence sparse)

cR

r

3r

(c) separable (d) kind of closed under
shallow minors



Lexical product G •Kh

The lexical product G •Kh blows up
each vertex in G with the clique Kh.



Lexical product G •Kh

V (G •K4) = V (G)× V (K4)

The lexical product G •Kh blows up
each vertex in G with the clique Kh.



Lexical product G •Kh

V (G •K4) = V (G)× V (K4)

E(G •K4) =
{((a1, b1), (a2, b2))|a1 = a2))}

The lexical product G •Kh blows up
each vertex in G with the clique Kh.



Lexical product G •Kh

V (G •K4) = V (G)× V (K4)

E(G •K4) =
{((a1, b1), (a2, b2))|a1 = a2))}

{((a1, b1), (a2, b2))|(a1, a2) ∈ E(G)}
∪

The lexical product G •Kh blows up
each vertex in G with the clique Kh.



Lexical product G •Kh

V (G •K4) = V (G)× V (K4)

E(G •K4) =
{((a1, b1), (a2, b2))|a1 = a2))}

{((a1, b1), (a2, b2))|(a1, a2) ∈ E(G)}
∪

If G has polynomial expansion, then G •Kh

has polynomial expansion.



Small separators
Graphs with subexponential expansion have
sublinear separators.

Nešetřil and Ossona de Mendez (2008)

Why?

1. No Kh as an `-shallow minor implies a
separator of size O(n/` + 4`h2 log n).

Plotkin, Rao, and Smith (1994)

2. Small expansion => small clique minors
as a function of depth
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Shallow minors of polynomial
expansion

Shallow minors of graphs with polynomial
expansion have polynomial expansion.

(If H is an r1-shallow minor of G, then an
r2-shallow minor of H is an (r1 · r2)-shallow
minor of G, and poly(r1 · r2) = poly(r2).)



Recap: polynomial expansion graphs are...

V (G •K4) = V (G)× V (K4)

E(G •K4) =
{((a1, b1), (a2, b2))|a1 = a2))}

{((a1, b1), (a2, b2))|(a1, a2) ∈ E(G)}
∪

FREE

(a) closed under lexical
product (b) degenerate

via separator for excluded
shallow minors FREE

(c) separable (d) kind of closed under
shallow minors



Main result:
polynomial expansion

I Graph G with polynomial expansion
I PTAS for (subset) dominating set
I Extensions: multiple demands, reach,
connected dominating set, vertex cover.



PTAS for independent set



Recap: low-density graphs are...

red density = ρ1
blue density = ρ2

total density ≤ ρ1 + ρ2

+

(a) additive (b) degenerate (hence sparse)

cR
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(c) separable (d) kind of closed under
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Balanced separators

Input: G = (V,E) with n vertices.

Output: Partition V = X t S t Y s.t.
(a) |X|, |Y | ≤ .99n.
(b) |S| ≤ n.99.
(c) No edges run between X and Y .
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Well-separated divisions

Input: G = (V,E) w/ n vertices, ε ∈ (0, 1)

Output: Cover V = C1∪C2∪ · · ·∪Cm s.t.
(a) |Ci| = poly(1/ε) for all i
(b) No edges between Ci \ Cj and Cj \ Ci
(c)
∑

i|Ci| ≤ (1 + ε)n
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Input: G = (V,E) w/ n vertices, ε ∈ (0, 1)
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Separators ⇒ divisions

⇓

Frederickson (1987)



Local search

local-search(G = (V,E), ε)
L← ∅, λ← poly(1/ε)

while there exists S ⊆ V s.t.
(a) |S| ≤ λ

(b) L4S is an independent set
(c) |L4S| > |L|

do L← L4S
end while
return L



Independent set: proof setup
O: Optimal solution
L: λ-locally optimal sol’n for λ = poly(1/ε)

O t L has low density (by additivity)

{C1, . . . , Cm}: w.s.-division of O t L

Bi = Ci ∩
(⋃

j 6=iCj
)
, bi = |Bi|

Oi = (O ∩ Ci) \Bi, oi = |Oi|
Li = (L ∩ Ci), ` = |Li|,
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PTAS for dominating set



Recap: low-density graphs are...

red density = ρ1
blue density = ρ2

total density ≤ ρ1 + ρ2
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(a) additive (b) degenerate (hence sparse)
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Local search

local-search(G = (V,E), ε)
L← V , λ← poly(1/ε)

while there exists S ⊆ V s.t.
(a) |S| ≤ λ

(b) L4S is a dominating set
(c) |L4S| < |L|

do L← L4S
end while
return L



Flowers

Glue an object in the dominating set with
the neighboring objects it dominates.
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Glue an object in the dominating set with
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Dominating set: proof setup
O = optimal solution, Õ = flowers of O
L = locally-optimal sol’n, L̃ = flowers of L

Õ ∪ L̃ has low density{
C̃1, . . . , C̃m

}
: w.s.-division of Õ ∪ L̃

{C1, . . . , Cm}: centers of C̃i for each i
Bi = Ci ∩

(⋃
j 6=iCj

)
Oi = O ∩ Ci, oi = |Oi|
Li = L ∩ Ci, `i = |Li|
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thanks!
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