Streaming Algorithms for Submodular Function Maximization

Chandra Chekuri Shalmoli Gupta Kent Quanrud

University of Illinois at Urbana-Champaign
October 6, 2015

Submodular functions

$f: 2^{\mathcal{N}} \rightarrow \mathbb{R}$
if $S \subseteq T \subseteq \mathcal{N}$, and $e \in \mathcal{N} \backslash T$, then

$$
f(S+e)-f(S) \geq f(T+e)-f(e)
$$

we will abbreviate $f_{S}(e) \xlongequal{\text { def }} f(S+e)-f(S)$

Types of submodular f

Monotone

$$
S \subseteq T \Rightarrow f(S) \leq f(T)
$$

Nonnegative

$$
f(S) \geq 0
$$

Directed edge cuts

Canonical problem

Pick (up to) k elements $e_{1}, \ldots, e_{k} \in \mathcal{N}$ maximizing $f\left(\left\{e_{1}, \ldots, e_{k}\right\}\right)$

Streaming model

$\mathcal{N}=\left\{e_{1}, e_{2}, \ldots\right\}$ presented one at a time
Arbitrary order
Our main constraint is space (ideally, $\tilde{O}(k)$)

Oracle model

Black box access for:
(a) Evaluating $f(S)$

Oracle model

Black box access for:
(a) Evaluating $f(S)$
(b) Checking if S is feasible
(for combinatorial constraints)

Monotone f in streams

Constraint: cardinality
Approximation ratio: $\frac{1}{2}-\epsilon$
Badanidiyuru, Mirzasoleiman, Karbasi, and Krause KDD 2014

Monotone f in streams

Constraint: Matroids, matchings, matroid intersection
Approximation ratio: $\frac{1}{4 p}$ for p matroids
Chakrabarti and Kale

Nonnegative f in streams (our result)

Constraint: Cardinality
Approximation ratio: $\frac{1-\epsilon}{2+e}$

Nonnegative f in streams (our result)

Constraint: p-matchoid $\mathcal{M}=(\mathcal{N}, \mathcal{I})$
Approximation ratio: $\Omega\left(\frac{1}{p}\right)$

	Monotone	Nonnegative
Cardinality	$\frac{1-\epsilon}{2}$	$\frac{1-\epsilon}{2+\epsilon}$
p matroids	$\frac{1}{4 p}$	$\frac{(1-\epsilon)(p-1)}{5 p^{2}-4 p}$

Monotone submodular maximization

Nemhauser, Wolsey, Fisher

- greedy
- $1-1 / e$ approximation for cardinality constraint

greedy

$S \leftarrow \emptyset$
for $i=1, \ldots, k$

$$
e_{i} \leftarrow \arg \max _{e \in \mathcal{N}} f_{S}(e)
$$

$S \leftarrow S+e_{i}$
$\mathcal{N} \leftarrow \mathcal{N}-e_{i}$
return S

$$
\left(\text { recall } f_{S}(e)=f(S+e)-f(S)\right)
$$

Monotone submodular maximization

in streams

Setup

You have a running solution S. $(|S| \leq k)$

The stream gives you an element e.

Should you add e to S ?

Thresholding

Badanidiyuru, Mirzasoleiman, Karbasi, and Krause

$$
\begin{aligned}
& \text { if }|S|<k \\
& \text { if } f_{S}(e) \geq \mathrm{OPT} / 2 k \\
& S \leftarrow S+e
\end{aligned}
$$

Guessing OPT

Thresholding

Badanidiyuru, Mirzasoleiman, Karbasi, and Krause

$$
\begin{aligned}
& \text { if }|S|<k \\
& \text { if } f_{S}(e) \geq \mathrm{OPT} / 2 k \\
& S \leftarrow S+e
\end{aligned}
$$

Exchange-based algorithm

Chakrabarti and Kale
if $|S|<k$ then $S \leftarrow S+e$
else
if $\exists d \in S$ s.t. exchanging d for e is a 'good enough'" exchange
then $S \leftarrow S-d+e$

Nonnegative submodular maximization

greedy does not work

Something like greedy works

Gupta, Roth, Schoenebeck, Talwar

- iterated-greedy
- $\Omega(1 / p)$ approximation for p systems

Buchbinder, Feldman, Naor, Schwartz SODA 2014

- randomized-greedy
- 1 /e approximation for cardinality

greedy?

Let S be greedy solution, and T an optimal solution
greedy gets you
$f(S) \geq c f(S \cup T) \quad$ for some constant c
without invoking monotonicity
if f is monotone, then

$$
f(S \cup T) \geq f(T)=\mathrm{OPT}
$$

If f is not monotone, then $f(S \cup T) \geq$ what?

Randomization lemma

if S is a random set with

$$
P[e \in S] \leq p
$$

for all e, then

$$
E[f(S \cup T)] \geq(1-p) f(T)
$$

Buchbinder, Feldman, Naor, Schwartz

randomized-greedy

$S \leftarrow \emptyset$
for $i=1, \ldots, k$
let e_{1}, \ldots, e_{k} maximize $f_{S}(e)$
pick $e_{j} \in\left\{e_{1}, \ldots, e_{k}\right\}$ randomly
$S \leftarrow S+e_{j}$
$\mathcal{N} \leftarrow \mathcal{N}-e_{j}$
return S

Buchbinder, Feldman, Naor, Schwartz

Nonnegative submodular maximization in streams

Randomized-Streaming-Greedy

Randomized-Streaming-Greedy

$S \leftarrow \emptyset, \quad B \leftarrow \emptyset$
for each element e in the stream if Is-Good (S, e)
$B \leftarrow B+e$
if B is full // $|B|=\Theta(k)$
pick $e \in B$ randomly add or exchange e into S clean up B
$S^{\prime} \leftarrow$ Offline (f, B)
return better of S and S^{\prime}

Is-Good (S, e)

if $|S|<k$
if $f_{S}(e) \geq \Omega(\mathrm{OPT} / k)$
then return "GOOD"
else // $|S|=k$
if $\exists d \in S$ such that

$$
f_{S}(e) \geq 2 \nu(f, S, d)+\Omega(\mathrm{OPT} / k)
$$

then return "GOOD"'
return ' $B A D$ '"

Magic value $\nu(f, S, d)$

if $\exists d \in S$ such that

$$
f_{S}(e) \geq 2 \nu(f, S, d)+\Omega(\mathrm{OPT} / k)
$$

then return "GOOD'"
$\nu(f, S, d)$ should:

Magic value $\nu(f, S, d)$

if $\exists d \in S$ such that

$$
f_{S}(e) \geq 2 \nu(f, S, d)+\Omega(\mathrm{OPT} / k)
$$

then return 'GOOD"'
$\nu(f, S, d)$ should:

- Account for the value originally added by d to S.

Magic value $\nu(f, S, d)$

$$
\begin{aligned}
& \text { if } \exists d \in S \text { such that } \\
& f_{S}(e) \geq 2 \nu(f, S, d)+\Omega(\mathrm{OPT} / k) \\
& \text { then return 'GGOD'" }
\end{aligned}
$$

$\nu(f, S, d)$ should:

- Account for the value originally added by d to S.
- Adapt dynamically to changing S.

Magic value $\nu(f, S, d)$

$$
\begin{aligned}
& \text { if } \exists d \in S \text { such that } \\
& f_{S}(e) \geq 2 \nu(f, S, d)+\Omega(\mathrm{OPT} / k) \\
& \text { then return 'GOOD"' }
\end{aligned}
$$

$\nu(f, S, d)$ should:

- Account for the value originally added by d to S.
- Adapt dynamically to changing S.
- Ensure that exchanging $S \rightarrow S-d+e$ increases $f(S)$ substantially.

Incremental value

Let $S=\left\{d_{1}, \ldots, d_{k}\right\}$ in order of insertion
The incremental value of d_{i} is defined as

$$
\begin{aligned}
& \nu\left(f, S, d_{i}\right) \\
& \quad \stackrel{\text { def }}{=} f\left(d_{1}, \ldots, d_{i}\right)-f\left(d_{1}, \ldots, d_{i-1}\right) .
\end{aligned}
$$

Incremental value

$$
\text { Let } S=\left\{d_{1}, \ldots, d_{k}\right\} \text { in order of insertion }
$$

The incremental value of d_{i} is defined as

$$
\nu\left(f, S, d_{i}\right) \stackrel{\text { def }}{=} f\left(d_{1}, \ldots, d_{i}\right)-f\left(d_{1}, \ldots, d_{i-1}\right)
$$

Property 1: When we add an element e to the running solution $S-d$,

$$
\nu(f, S-d+e, e)=f_{S-d}(e)
$$

Incremental value

$$
\text { Let } S=\left\{d_{1}, \ldots, d_{k}\right\} \text { in order of insertion }
$$

The incremental value of d_{i} is defined as

$$
\nu\left(f, S, d_{i}\right) \stackrel{\text { def }}{=} f\left(d_{1}, \ldots, d_{i}\right)-f\left(d_{1}, \ldots, d_{i-1}\right)
$$

Property 2: ν telescopes.

$$
\sum_{d \in S} \nu(f, S, d)=f(S)
$$

Incremental value

$$
\text { Let } S=\left\{d_{1}, \ldots, d_{k}\right\} \text { in order of insertion }
$$

The incremental value of d_{i} is defined as

$$
\nu\left(f, S, d_{i}\right) \stackrel{\text { def }}{=} f\left(d_{1}, \ldots, d_{i}\right)-f\left(d_{1}, \ldots, d_{i-1}\right)
$$

Property 3: For fixed $d \in S$, its incremental value $\nu(f, S, d)$ only increases over the course of the algorithm.

Is-Good (S, e)

if $|S|<k$
if $f_{S}(e) \geq \Omega(\mathrm{OPT} / k)$
then return "GOOD"
else // $|S|=k$
if $\exists d \in S$ such that

$$
f_{S}(e) \geq 2 \nu(f, S, d)+\Omega(\mathrm{OPT} / k)
$$

then return "GOOD"'
return ' $B A D$ '"

Randomized-Streaming-Greedy

$S \leftarrow \emptyset, \quad B \leftarrow \emptyset$
for each element e in the stream if Is-Good (S, e)
$B \leftarrow B+e$
if B is full // $|B|=\Theta(k)$
pick $e \in B$ randomly add or exchange e into S clean up B
$S^{\prime} \leftarrow$ Offline (f, B)
return better of S and S^{\prime}

Conclusion

Technical result

Constant factor approximations
Nonnegative submodular maximization
1-pass streams
Broad class of combinatorial constraints

Main techniques

Randomized buffer
Greedy w/r/t incremental value
Post-processing

Open questions

Modeling
Lower bounds
thanks

